# Kabulongagirls/Trigonometry/Chapter 1

## Chapter 1

- RIGHT ANGLED TRIANGLES

In a right-angled triangle, the sine, cosine and tangent are defined as follows

If one angle of a triangle is 90 degrees and one of the other angles is known, the third is thereby fixed, because the three angles of any triangle add up to 180 degrees. The two acute angles therefore add up to 90 degrees: they are complementary angles. The shape of a right triangle is completely determined, up to similarity (geometry)similarity, by the angles. This means that once one of the other angles is known, the ratios of the various sides are always the same regardless of the overall size of the triangle. These ratios are given by the following trigonometric functions of the known angle *A*, where *a*, * b* and *c* refer to the lengths of the sides in the accompanying figure:

- The
**sine**function (sin), defined as the ratio of the side opposite leg to the hypotenuse.

- [math]\sin A=\frac{\textrm{opposite}}{\textrm{hypotenuse}}=\frac{a}{\,c\,}\,.[/math]

- The
**cosine**function (cos), defined as the ratio of the adjacent leg to the hypotenuse.

- [math]\cos A=\frac{\textrm{adjacent}}{\textrm{hypotenuse}}=\frac{b}{\,c\,}\,.[/math]

- The
**tangent**function (tan), defined as the ratio of the opposite leg to the adjacent leg.

- [math]\tan A=\frac{\textrm{opposite}}{\textrm{adjacent}}=\frac{a}{\,b\,}=\frac{\sin A}{\cos A}\,.[/math]

The **hypotenuse** is the side opposite to the 90 degree angle in a right triangle; it is the longest side of the triangle, and one of the two sides adjacent to angle *A*. The **adjacent leg** is the other side that is adjacent to angle *A*. The **opposite side** is the side that is opposite to angle *A*. The terms **perpendicular** and **base** are sometimes used for the opposite and adjacent sides respectively. Many people find it easy to remember what sides of the right triangle are equal to sine, cosine, or tangent, by memorizing the word SOH-CAH-TOA (see below under Mnemonics).