# Secondary Mechanics/Page2: Linear Motions

In order to measure a movement, we need one

• coordinate of location x and one
• coordinate of time t.

The local difference is then delta x:
$\Delta x$ = x2 - x1

(Local coordinate at the end minus local coordinate at the beginning of the time interval)

Correspondingly the time interval $\Delta t$:
$\Delta t$ = t2 - t1

Thus the speed becomes

v = $\frac{\Delta x}{\Delta t}$


(distance through time)

Note: This is a quotient out of differences,

If we take two neighbouring measuring points, then we get the momentary speed of the cart tum to time t1 and/or, we take first and the 51 to t2. , We get the average speed in the time interval to measuring point

$\Delta t$ = t51 - t1

The movement can be represented graphically in a time-location diagram (t-x-diagram):

# Assignment

 Task of 1.2: Draw a time location diagram each for cart A and B! Select the units suitably!

Two snails move uniformly and upright in a garden:
The first snail moves with 1 mm / s, the second in 2 s by 4 mm.
After 2 s and remains the second but suddenly snail.
If the first snail second outdated, they doubled their speed, while the second half with early speed creeps.
a) Draw a common x-t-diagram!
(1s = 1 cm ; 1 mm = 1 cm)
b)Represent the dependence of the speeds of the time for both movements in a diagram!
(1 s = 1 cm; 0,5 mm/s = 1 cm.)