# Help:LaTeX Symbol Tables - Mathematics

 $\mathrm{L\!\!^{{}_{\scriptstyle A}} \!\!\!\!\!\;\; T\!_{\displaystyle E} \! X} \text{ Symbol Tables for WikiEducator}\,$ Home Body-Text Mathematics Science and Technology Dingbats Miscellaneous

### Math Alphabets

code Alphabet, Numbers & Symbols
\mathrm{ } $\mathrm{1234567890}\quad \mathrm{abcdefghijklmnopqrstuvwxyz}\qquad$
$\mathrm{ABCDEFGHIJKLMNOPQRSTUVWXYZ}\,$
\mathit{ } $\mathit{1234567890}\quad \mathit{abcdefghijklmnopqrstuvwxyz}\qquad$
$\mathit{ABCDEFGHIJKLMNOPQRSTUVWXYZ}\,$
\mathsf{ } $\mathsf{1234567890}\quad \mathsf{abcdefghijklmnopqrstuvwxyz}\qquad$
$\mathsf{ABCDEFGHIJKLMNOPQRSTUVWXYZ}\,$
\mathbf{ } $\mathbf{1234567890}\quad \mathbf{abcdefghijklmnopqrstuvwxyz}\qquad$
$\mathbf{ABCDEFGHIJKLMNOPQRSTUVWXYZ}\,$
\mathcal{ } $\mathcal{1234567890}\quad \mathcal{abcdefghijklmnopqrstuvwxyz}\qquad$
$\mathcal{ABCDEFGHIJKLMNOPQRSTUVWXYZ}\,$
\mathbb{ } $\mathbb{1234567890}\quad \mathbb{abcdefghijklmnopqrstuvwxyz}\qquad$
$\mathbb{ABCDEFGHIJKLMNOPQRSTUVWXYZ}\,$
\mathfrak{ } $\mathfrak{1234567890}\quad \mathfrak{abcdefghijklmnopqrstuvwxyz}\qquad$
$\mathfrak{ABCDEFGHIJKLMNOPQRSTUVWXYZ}\,$

### Greek Symbols

Name LaTeX Code Lowcase LaTeX Code Capital LaTeX Code Bold Lowcase LaTeX Code Bold Capital
ALPHA \alpha $\alpha\,$ \Alpha $\Alpha\,$ \boldsymbol{\alpha} $\boldsymbol{\alpha}$ \boldsymbol{\Alpha} $\boldsymbol{\Alpha}$
BETA \beta $\beta\,$ \Beta $\Beta\,$ \boldsymbol{\beta} $\boldsymbol{\beta}$ \boldsymbol{\Beta} $\boldsymbol{\Beta}$
GAMMA \gamma $\gamma\,$ \Gamma $\Gamma\,$ \boldsymbol{\gamma} $\boldsymbol{\gamma}$ \boldsymbol{\Gamma} $\boldsymbol{\Gamma}$
DIGAMMA \digamma $\digamma\,$ \boldsymbol{\digamma} $\boldsymbol{\digamma}$
DELTA \delta $\delta\,$ \Delta $\Delta\,$ \boldsymbol{\delta} $\boldsymbol{\delta}$ \boldsymbol{\Delta} $\boldsymbol{\Delta}$
EPSILON \epsilon $\epsilon\,$ \Epsilon $\Epsilon\,$ \boldsymbol{\epsilon} $\boldsymbol{\epsilon}$ \boldsymbol{\Epsilon} $\boldsymbol{\Epsilon}$
VAREPSILON \varepsilon $\varepsilon\,$ \boldsymbol{\varepsilon} $\boldsymbol{\varepsilon}$
ZETA \zeta $\zeta\,$ Z $\Zeta\,$ \boldsymbol{\zeta} $\boldsymbol{\zeta}$ \boldsymbol{Z} $\boldsymbol{\Zeta}$
ETA \eta $\eta\,$ \Eta $\Eta\,$ \boldsymbol{\eta} $\boldsymbol{\eta}$ \boldsymbol{\Eta} $\boldsymbol{\Eta}$
THETA \theta $\theta\,$ \Theta $\Theta\,$ \boldsymbol{\theta} $\boldsymbol{\theta}$ \boldsymbol{\Theta} $\boldsymbol{\Theta}$
VARTHETA \vartheta $\vartheta\,$ \boldsymbol{\vartheta} $\boldsymbol{\vartheta}$
IOTA \iota $\iota\,$ \Iota $\Iota\,$ \boldsymbol{\iota} $\boldsymbol{\iota}$ \boldsymbol{\Iota} $\boldsymbol{\Iota}$
KAPPA \kappa $\kappa\,$ \Kappa $\Kappa\,$ \boldsymbol{\kappa} $\boldsymbol{\kappa}$ \boldsymbol{\Kappa} $\boldsymbol{\Kappa}$
VARKAPPA \varkappa $\varkappa\,$ \boldsymbol{\varkappa} $\boldsymbol{\varkappa}$
LAMBDA \lambda $\lambda\,$ \Lambda $\Lambda\,$ \boldsymbol{\lambda} $\boldsymbol{\lambda}$ \boldsymbol{\Lambda} $\boldsymbol{\Lambda}$
MU \mu $\mu\,$ \Mu $\Mu\,$ \boldsymbol{\mu} $\boldsymbol{\mu}$ \boldsymbol{\Mu} $\boldsymbol{\Mu}$
NU \nu $\nu\,$ \Nu $\Nu\,$ \boldsymbol{\nu} $\boldsymbol{\nu}$ \boldsymbol{\Nu} $\boldsymbol{\Nu}$
XI \xi $\xi\,$ \Xi $\Xi\,$ \boldsymbol{\xi} $\boldsymbol{\xi}$ \boldsymbol{\Xi} $\boldsymbol{\Xi}$
OMICRON o $o\,$ O $O\,$ \boldsymbol{o} $\boldsymbol{o}$ \boldsymbol{O} $\boldsymbol{O}$
PI \pi $\pi\,$ \Pi $\Pi\,$ \boldsymbol{\pi} $\boldsymbol{\pi}$ \boldsymbol{\Pi} $\boldsymbol{\Pi}$
VARPI \varpi $\varpi\,$ \boldsymbol{\varpi} $\boldsymbol{\varpi}$
RHO \rho $\rho\,$ \Rho $\Rho\,$ \boldsymbol{\rho} $\boldsymbol{\rho}$ \boldsymbol{\Rho} $\boldsymbol{\Rho}$
VARRHO \varrho $\varrho\,$ \boldsymbol{\varrho} $\boldsymbol{\varrho}$
SIGMA \sigma $\sigma\,$ \Sigma $\Sigma\,$ \boldsymbol{\sigma} $\boldsymbol{\sigma}$ \boldsymbol{\Sigma} $\boldsymbol{\Sigma}$
VARSIGMA \varsigma $\varsigma\,$ \boldsymbol{\varsigma} $\boldsymbol{\varsigma}$
TAU \tau $\tau\,$ \Tau $\Tau\,$ \boldsymbol{\tau} $\boldsymbol{\tau}$ \boldsymbol{\Tau} $\boldsymbol{\Tau}$
UPSILON \upsilon $\upsilon\,$ \Upsilon $\Upsilon\,$ \boldsymbol{\upsilon} $\boldsymbol{\upsilon}$ \boldsymbol{\Upsilon} $\boldsymbol{\Upsilon}$
PHI \phi $\phi\,$ \Phi $\Phi\,$ \boldsymbol{\phi} $\boldsymbol{\phi}$ \boldsymbol{\Phi} $\boldsymbol{\Phi}$
VARPHI \varphi $\varphi\,$ \boldsymbol{\varphi} $\boldsymbol{\varphi}$
CHI \chi $\chi\,$ \Chi $\Chi\,$ \boldsymbol{\chi} $\boldsymbol{\chi}$ \boldsymbol{\Chi} $\boldsymbol{\Chi}$
PSI \psi $\psi\,$ \Psi $\Psi\,$ \boldsymbol{\psi} $\boldsymbol{\psi}$ \boldsymbol{\Psi} $\boldsymbol{\Psi}$
OMEGA \omega $\omega\,$ \Omega $\Omega\,$ \boldsymbol{\omega} $\boldsymbol{\omega}$ \boldsymbol{\Omega} $\boldsymbol{\Omega}$

### Hebrew Symbols

LaTeX Code Aleph LaTeX Code Beth LaTeX Code Gimel LaTeX Code Daleth
\aleph $\aleph\,$ \beth $\beth\,$ \gimel $\gimel$ \daleth $\daleth$

### Arrows

LaTeX Code Output LaTeX Code Output LaTeX Code Output LaTeX Code Output
\Downarrow $\Downarrow$ \longleftarrow $\longleftarrow$ \nwarrow $\nwarrow$ \downarrow $\downarrow$
\Longleftarrow $\Longleftarrow$ \Rightarrow $\Rightarrow$ \hookleftarrow $\hookleftarrow$ \longleftrightarrow $\longleftrightarrow$
\rightarrow $\rightarrow$ \hookrightarrow $\hookrightarrow$ \Longleftrightarrow $\Longleftrightarrow$ \searrow $\searrow$
\longmapsto $\longmapsto$ \swarrow $\swarrow$ \leftarrow $\leftarrow$ \Updownarrow $\Updownarrow$
\Longrightarrow $\Longrightarrow$ \uparrow $\uparrow$ \Leftarrow $\Leftarrow$ \longrightarrow $\longrightarrow$
\Uparrow $\Uparrow$ \Leftrightarrow $\Leftrightarrow$ \mapsto $\mapsto$ \updownarrow $\updownarrow$
\leftrightarrow $\leftrightarrow$ \nearrow ↑ $\nearrow$

$\gets \to \swarrow$

1. Accents
2. Arrows
3. Binary and relational operators
4. Delimiters
5. Greek letters
6. Miscellaneous symbols
7. Math functions
8. Variable size math symbols
9. Math Miscellany

The AMS dot symbols are named according to their intended usage: \dotsb between pairs of binary operators/relations, \dotsc between pairs of commas, \dotsi between pairs of integrals, \dotsm between pairs of multiplication signs, and \dotso between other symbol pairs.

## Functions, symbols, special characters

### Accents/Diacritics

\acute{a} \grave{a} \hat{a} \tilde{a} \breve{a} $\acute{a} \grave{a} \hat{a} \tilde{a} \breve{a}\,\!$
\check{a} \bar{a} \ddot{a} \dot{a} $\check{a} \bar{a} \ddot{a} \dot{a}\!$

### Standard functions

\sin a \cos b \tan c $\sin a \cos b \tan c\!$
\sec d \csc e \cot f $\sec d \csc e \cot f\,\!$
\arcsin h \arccos i \arctan j $\arcsin h \arccos i \arctan j\,\!$
\sinh k \cosh l \tanh m \coth n\! $\sinh k \cosh l \tanh m \coth n\!$
\operatorname{sh}\,o\,\operatorname{ch}\,p\,\operatorname{th}\,q\! $\operatorname{sh}\,o\,\operatorname{ch}\,p\,\operatorname{th}\,q\!$
\operatorname{arsinh}\,r\,\operatorname{arcosh}\,s\,\operatorname{artanh}\,t $\operatorname{arsinh}\,r\,\operatorname{arcosh}\,s\,\operatorname{artanh}\,t\,\!$
\lim u \limsup v \liminf w \min x \max y\! $\lim u \limsup v \liminf w \min x \max y\!$
\inf z \sup a \exp b \ln c \lg d \log e \log_{10} f \ker g\! $\inf z \sup a \exp b \ln c \lg d \log e \log_{10} f \ker g\!$
\deg h \gcd i \Pr j \det k \hom l \arg m \dim n $\deg h \gcd i \Pr j \det k \hom l \arg m \dim n\!$

### Modular arithmetic

s_k \equiv 0 \pmod{m} $s_k \equiv 0 \pmod{m}\,\!$
a\,\bmod\,b $a\,\bmod\,b\,\!$

### Derivatives

\nabla \, \partial x \, dx \, \dot x \, \ddot y\, dy/dx\, \frac{dy}{dx}\, \frac{\partial^2 y}{\partial x_1\,\partial x_2} $\nabla \, \partial x \, dx \, \dot x \, \ddot y\, dy/dx\, \frac{dy}{dx}\, \frac{\partial^2 y}{\partial x_1\,\partial x_2}$

### Sets

\forall \exists \empty \emptyset \varnothing $\forall \exists \empty \emptyset \varnothing\,\!$
\in \ni \not \in \notin \subset \subseteq \supset \supseteq $\in \ni \not \in \notin \subset \subseteq \supset \supseteq\,\!$
\cap \bigcap \cup \bigcup \biguplus \setminus \smallsetminus $\cap \bigcap \cup \bigcup \biguplus \setminus \smallsetminus\,\!$
\sqsubset \sqsubseteq \sqsupset \sqsupseteq \sqcap \sqcup \bigsqcup $\sqsubset \sqsubseteq \sqsupset \sqsupseteq \sqcap \sqcup \bigsqcup\,\!$

### Operators

+ \oplus \bigoplus \pm \mp -  $+ \oplus \bigoplus \pm \mp - \,\!$
\times \otimes \bigotimes \cdot \circ \bullet \bigodot $\times \otimes \bigotimes \cdot \circ \bullet \bigodot\,\!$
\star * / \div \frac{1}{2} $\star * / \div \frac{1}{2}\,\!$

### Logic

\land (or \and) \wedge \bigwedge \bar{q} \to p $\land \wedge \bigwedge \bar{q} \to p\,\!$
\lor \vee \bigvee \lnot \neg q \And $\lor \vee \bigvee \lnot \neg q \And\,\!$

### Root

\sqrt{2} \sqrt[n]{x} $\sqrt{2} \sqrt[n]{x}\,\!$

### Relations

\sim \approx \simeq \cong \dot= \overset{\underset{\mathrm{def}}{}}{=} $\sim \approx \simeq \cong \dot= \overset{\underset{\mathrm{def}}{}}{=}\,\!$
\le < \ll \gg \ge > \equiv \not\equiv \ne \mbox{or} \neq \propto $\le \lt \ll \gg \ge \gt \equiv \not\equiv \ne \mbox{or} \neq \propto\,\!$

### Geometric

\Diamond \Box \triangle \angle \perp \mid \nmid \| 45^\circ $\Diamond \, \Box \, \triangle \, \angle \perp \, \mid \; \nmid \, \| 45^\circ\,\!$

### Arrows

\leftarrow (or \gets) \rightarrow (or \to) \nleftarrow \nrightarrow \leftrightarrow \nleftrightarrow \longleftarrow \longrightarrow \longleftrightarrow $\leftarrow \rightarrow \nleftarrow \not\to \leftrightarrow \nleftrightarrow \longleftarrow \longrightarrow \longleftrightarrow \,\!$
\Leftarrow \Rightarrow \nLeftarrow \nRightarrow \Leftrightarrow \nLeftrightarrow \Longleftarrow \Longrightarrow \Longleftrightarrow (or \iff) $\Leftarrow \Rightarrow \nLeftarrow \nRightarrow \Leftrightarrow \nLeftrightarrow \Longleftarrow \Longrightarrow \Longleftrightarrow \!$
\uparrow \downarrow \updownarrow \Uparrow \Downarrow \Updownarrow \nearrow \searrow \swarrow \nwarrow $\uparrow \downarrow \updownarrow \Uparrow \Downarrow \Updownarrow \nearrow \searrow \swarrow \nwarrow \!$
\rightharpoonup \rightharpoondown \leftharpoonup \leftharpoondown \upharpoonleft \upharpoonright \downharpoonleft \downharpoonright \rightleftharpoons \leftrightharpoons $\rightharpoonup \rightharpoondown \leftharpoonup \leftharpoondown \upharpoonleft \upharpoonright \downharpoonleft \downharpoonright \rightleftharpoons \leftrightharpoons \,\!$
\curvearrowleft \circlearrowleft \Lsh \upuparrows \rightrightarrows \rightleftarrows \Rrightarrow \rightarrowtail \looparrowright $\curvearrowleft \circlearrowleft \Lsh \upuparrows \rightrightarrows \rightleftarrows \Rrightarrow \rightarrowtail \looparrowright \,\!$
\curvearrowright \circlearrowright \Rsh \downdownarrows \leftleftarrows \leftrightarrows \Lleftarrow \leftarrowtail \looparrowleft $\curvearrowright \circlearrowright \Rsh \downdownarrows \leftleftarrows \leftrightarrows \Lleftarrow \leftarrowtail \looparrowleft \,\!$
\mapsto \longmapsto \hookrightarrow \hookleftarrow \multimap \leftrightsquigarrow \rightsquigarrow  $\mapsto \longmapsto \hookrightarrow \hookleftarrow \multimap \leftrightsquigarrow \rightsquigarrow \,\!$

### Special

\And \eth \S \P \% \dagger \ddagger \ldots \cdots $\And \eth \S \P \% \dagger \ddagger \ldots \cdots\,\!$
\smile \frown \wr \triangleleft \triangleright \infty \bot \top $\smile \frown \wr \triangleleft \triangleright \infty \bot \top\,\!$
\vdash \vDash \Vdash \models \lVert \rVert \imath \hbar $\vdash \vDash \Vdash \models \lVert \rVert \imath \hbar\,\!$
\ell \mho \Finv \Re \Im \wp \complement $\ell \mho \Finv \Re \Im \wp \complement\,\!$
\diamondsuit \heartsuit \clubsuit \spadesuit \Game \flat \natural \sharp $\diamondsuit \heartsuit \clubsuit \spadesuit \Game \flat \natural \sharp\,\!$

### Unsorted (new stuff)

 \vartriangle \triangledown \lozenge \circledS \measuredangle \nexists \Bbbk \backprime \blacktriangle \blacktriangledown $\vartriangle \triangledown \lozenge \circledS \measuredangle \nexists \Bbbk \backprime \blacktriangle \blacktriangledown$
 \blacksquare \blacklozenge \bigstar \sphericalangle \diagup \diagdown \dotplus \Cap \Cup \barwedge $\blacksquare \blacklozenge \bigstar \sphericalangle \diagup \diagdown \dotplus \Cap \Cup \barwedge\!$
 \veebar \doublebarwedge \boxminus \boxtimes \boxdot \boxplus \divideontimes \ltimes \rtimes \leftthreetimes $\veebar \doublebarwedge \boxminus \boxtimes \boxdot \boxplus \divideontimes \ltimes \rtimes \leftthreetimes$
 \rightthreetimes \curlywedge \curlyvee \circleddash \circledast \circledcirc \centerdot \intercal \leqq \leqslant $\rightthreetimes \curlywedge \curlyvee \circleddash \circledast \circledcirc \centerdot \intercal \leqq \leqslant$
 \eqslantless \lessapprox \approxeq \lessdot \lll \lessgtr \lesseqgtr \lesseqqgtr \doteqdot \risingdotseq $\eqslantless \lessapprox \approxeq \lessdot \lll \lessgtr \lesseqgtr \lesseqqgtr \doteqdot \risingdotseq$
 \fallingdotseq \backsim \backsimeq \subseteqq \Subset \preccurlyeq \curlyeqprec \precsim \precapprox \vartriangleleft $\fallingdotseq \backsim \backsimeq \subseteqq \Subset \preccurlyeq \curlyeqprec \precsim \precapprox \vartriangleleft$
 \Vvdash \bumpeq \Bumpeq \geqq \geqslant \eqslantgtr \gtrsim \gtrapprox \eqsim \gtrdot $\Vvdash \bumpeq \Bumpeq \geqq \geqslant \eqslantgtr \gtrsim \gtrapprox \eqsim \gtrdot$
 \ggg \gtrless \gtreqless \gtreqqless \eqcirc \circeq \triangleq \thicksim \thickapprox \supseteqq $\ggg \gtrless \gtreqless \gtreqqless \eqcirc \circeq \triangleq \thicksim \thickapprox \supseteqq$
 \Supset \succcurlyeq \curlyeqsucc \succsim \succapprox \vartriangleright \shortmid \shortparallel \between \pitchfork $\Supset \succcurlyeq \curlyeqsucc \succsim \succapprox \vartriangleright \shortmid \shortparallel \between \pitchfork$
 \varpropto \blacktriangleleft \therefore \backepsilon \blacktriangleright \because \nleqslant \nleqq \lneq \lneqq $\varpropto \blacktriangleleft \therefore \backepsilon \blacktriangleright \because \nleqslant \nleqq \lneq \lneqq$
 \lvertneqq \lnsim \lnapprox \nprec \npreceq \precneqq \precnsim \precnapprox \nsim \nshortmid $\lvertneqq \lnsim \lnapprox \nprec \npreceq \precneqq \precnsim \precnapprox \nsim \nshortmid$
 \nvdash \nVdash \ntriangleleft \ntrianglelefteq \nsubseteq \nsubseteqq \varsubsetneq \subsetneqq \varsubsetneqq \ngtr $\nvdash \nVdash \ntriangleleft \ntrianglelefteq \nsubseteq \nsubseteqq \varsubsetneq \subsetneqq \varsubsetneqq \ngtr$
\subsetneq $\subsetneq$
 \ngeqslant \ngeqq \gneq \gneqq \gvertneqq \gnsim \gnapprox \nsucc \nsucceq \succneqq $\ngeqslant \ngeqq \gneq \gneqq \gvertneqq \gnsim \gnapprox \nsucc \nsucceq \succneqq$
 \succnsim \succnapprox \ncong \nshortparallel \nparallel \nvDash \nVDash \ntriangleright \ntrianglerighteq \nsupseteq $\succnsim \succnapprox \ncong \nshortparallel \nparallel \nvDash \nVDash \ntriangleright \ntrianglerighteq \nsupseteq$
 \nsupseteqq \varsupsetneq \supsetneqq \varsupsetneqq $\nsupseteqq \varsupsetneq \supsetneqq \varsupsetneqq$
\jmath \surd \ast \uplus \diamond \bigtriangleup \bigtriangledown \ominus $\jmath \surd \ast \uplus \diamond \bigtriangleup \bigtriangledown \ominus\,\!$
\oslash \odot \bigcirc \amalg \prec \succ \preceq \succeq $\oslash \odot \bigcirc \amalg \prec \succ \preceq \succeq\,\!$
\dashv \asymp \doteq \parallel $\dashv \asymp \doteq \parallel\,\!$
\ulcorner \urcorner \llcorner \lrcorner $\ulcorner \urcorner \llcorner \lrcorner$

## Larger Expressions

### Subscripts, superscripts, integrals

Feature Syntax How it looks rendered
HTML PNG
Superscript a^2 $a^2$ $a^2 \,\!$
Subscript a_2 $a_2$ $a_2 \,\!$
Grouping a^{2+2} $a^{2+2}$ $a^{2+2}\,\!$
a_{i,j} $a_{i,j}$ $a_{i,j}\,\!$
Combining sub & super without and with horizontal separation x_2^3 $x_2^3$ $x_2^3 \,\!$
{x_2}^3 ${x_2}^3$ ${x_2}^3 \,\!$
Super super 10^{10^{ \,\!{8} } $10^{10^{ \,\! 8 } }$
Super super 10^{10^{ \overset{8}{} }} $10^{10^{ \overset{8}{} }}$
Super super (wrong in HTML in some browsers) 10^{10^8} $10^{10^8}$
Preceding and/or Additional sub & super \sideset{_1^2}{_3^4}\prod_a^b $\sideset{_1^2}{_3^4}\prod_a^b$
{}_1^2\!\Omega_3^4 ${}_1^2\!\Omega_3^4$
Stacking \overset{\alpha}{\omega} $\overset{\alpha}{\omega}$
\underset{\alpha}{\omega} $\underset{\alpha}{\omega}$
\overset{\alpha}{\underset{\gamma}{\omega}} $\overset{\alpha}{\underset{\gamma}{\omega}}$
\stackrel{\alpha}{\omega} $\stackrel{\alpha}{\omega}$
Derivative (forced PNG) x', y'', f', f''\!   $x', y'', f', f''\!$
Derivative (f in italics may overlap primes in HTML) x', y'', f', f'' $x', y'', f', f''$ $x', y'', f', f''\!$
Derivative (wrong in HTML) x^\prime, y^{\prime\prime} $x^\prime, y^{\prime\prime}$ $x^\prime, y^{\prime\prime}\,\!$
Derivative (wrong in PNG) x\prime, y\prime\prime $x\prime, y\prime\prime$ $x\prime, y\prime\prime\,\!$
Derivative dots \dot{x}, \ddot{x} $\dot{x}, \ddot{x}$
Underlines, overlines, vectors \hat a \ \bar b \ \vec c $\hat a \ \bar b \ \vec c$
\overrightarrow{a b} \ \overleftarrow{c d} \ \widehat{d e f} $\overrightarrow{a b} \ \overleftarrow{c d} \ \widehat{d e f}$
\overline{g h i} \ \underline{j k l} $\overline{g h i} \ \underline{j k l}$
Arrows  A \xleftarrow{n+\mu-1} B \xrightarrow[T]{n\pm i-1} C $A \xleftarrow{n+\mu-1} B \xrightarrow[T]{n\pm i-1} C$
Overbraces \overbrace{ 1+2+\cdots+100 }^{5050} $\overbrace{ 1+2+\cdots+100 }^{5050}$
Underbraces \underbrace{ a+b+\cdots+z }_{26} $\underbrace{ a+b+\cdots+z }_{26}$
Sum \sum_{k=1}^N k^2 $\sum_{k=1}^N k^2$
Sum (force \textstyle) \textstyle \sum_{k=1}^N k^2  $\textstyle \sum_{k=1}^N k^2$
Product \prod_{i=1}^N x_i $\prod_{i=1}^N x_i$
Product (force \textstyle) \textstyle \prod_{i=1}^N x_i $\textstyle \prod_{i=1}^N x_i$
Coproduct \coprod_{i=1}^N x_i $\coprod_{i=1}^N x_i$
Coproduct (force \textstyle) \textstyle \coprod_{i=1}^N x_i $\textstyle \coprod_{i=1}^N x_i$
Limit \lim_{n \to \infty}x_n $\lim_{n \to \infty}x_n$
Limit (force \textstyle) \textstyle \lim_{n \to \infty}x_n $\textstyle \lim_{n \to \infty}x_n$
Integral \int\limits_{1}^{3}\frac{e^3/x}{x^2}\, dx $\int\limits_{1}^{3}\frac{e^3/x}{x^2}\, dx$
Integral (alternate limits style) \int_{1}^{3}\frac{e^3/x}{x^2}\, dx $\int_{1}^{3}\frac{e^3/x}{x^2}\, dx$
Integral (force \textstyle) \textstyle \int\limits_{-N}^{N} e^x\, dx $\textstyle \int\limits_{-N}^{N} e^x\, dx$
Integral (force \textstyle, alternate limits style) \textstyle \int_{-N}^{N} e^x\, dx $\textstyle \int_{-N}^{N} e^x\, dx$
Double integral \iint\limits_D \, dx\,dy $\iint\limits_D \, dx\,dy$
Triple integral \iiint\limits_E \, dx\,dy\,dz $\iiint\limits_E \, dx\,dy\,dz$
Quadruple integral \iiiint\limits_F \, dx\,dy\,dz\,dt $\iiiint\limits_F \, dx\,dy\,dz\,dt$
Line or path integral \int_C x^3\, dx + 4y^2\, dy $\int_C x^3\, dx + 4y^2\, dy$
Closed line or path integral \oint_C x^3\, dx + 4y^2\, dy $\oint_C x^3\, dx + 4y^2\, dy$
Intersections \bigcap_1^n p $\bigcap_1^n p$
Unions \bigcup_1^k p $\bigcup_1^k p$

### Fractions, matrices, multilines

Feature Syntax How it looks rendered
Fractions \frac{2}{4}=0.5 $\frac{2}{4}=0.5$
Small Fractions \tfrac{2}{4} = 0.5 $\tfrac{2}{4} = 0.5$
Large (normal) Fractions \dfrac{2}{4} = 0.5 \qquad \dfrac{2}{c + \dfrac{2}{d + \dfrac{2}{4}}} = a  $\dfrac{2}{4} = 0.5 \qquad \dfrac{2}{c + \dfrac{2}{d + \dfrac{2}{4}}} = a$
Large (nested) Fractions \cfrac{2}{c + \cfrac{2}{d + \cfrac{2}{4}}} = a $\cfrac{2}{c + \cfrac{2}{d + \cfrac{2}{4}}} = a$
Binomial coefficients \binom{n}{k} $\binom{n}{k}$
Small Binomial coefficients \tbinom{n}{k} $\tbinom{n}{k}$
Large (normal) Binomial coefficients \dbinom{n}{k} $\dbinom{n}{k}$
Matrices
\begin{matrix}
x & y \\
z & v
\end{matrix}
$\begin{matrix} x & y \\ z & v \end{matrix}$
\begin{vmatrix}
x & y \\
z & v
\end{vmatrix}
$\begin{vmatrix} x & y \\ z & v \end{vmatrix}$
\begin{Vmatrix}
x & y \\
z & v
\end{Vmatrix}
$\begin{Vmatrix} x & y \\ z & v \end{Vmatrix}$
\begin{bmatrix}
0      & \cdots & 0      \\
\vdots & \ddots & \vdots \\
0      & \cdots & 0
\end{bmatrix}
$\begin{bmatrix} 0 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & 0\end{bmatrix}$
\begin{Bmatrix}
x & y \\
z & v
\end{Bmatrix}
$\begin{Bmatrix} x & y \\ z & v \end{Bmatrix}$
\begin{pmatrix}
x & y \\
z & v
\end{pmatrix}
$\begin{pmatrix} x & y \\ z & v \end{pmatrix}$
\bigl( \begin{smallmatrix}
a&b\\ c&d
\end{smallmatrix} \bigr)

$\bigl( \begin{smallmatrix} a&b\\ c&d \end{smallmatrix} \bigr)$
Case distinctions
f(n) =
\begin{cases}
n/2,  & \mbox{if }n\mbox{ is even} \\
3n+1, & \mbox{if }n\mbox{ is odd}
\end{cases}
$f(n) = \begin{cases} n/2, & \mbox{if }n\mbox{ is even} \\ 3n+1, & \mbox{if }n\mbox{ is odd} \end{cases}$
Multiline equations
\begin{align}
f(x) & = (a+b)^2 \\
& = a^2+2ab+b^2 \\
\end{align}

\begin{align} f(x) & = (a+b)^2 \\ & = a^2+2ab+b^2 \\ \end{align}
\begin{alignat}{2}
f(x) & = (a-b)^2 \\
& = a^2-2ab+b^2 \\
\end{alignat}

\begin{alignat}{2} f(x) & = (a-b)^2 \\ & = a^2-2ab+b^2 \\ \end{alignat}
Multiline equations (must define number of colums used ({lcr}) (should not be used unless needed)
\begin{array}{lcl}
z        & = & a \\
f(x,y,z) & = & x + y + z
\end{array}
$\begin{array}{lcl} z & = & a \\ f(x,y,z) & = & x + y + z \end{array}$
Multiline equations (more)
\begin{array}{lcr}
z        & = & a \\
f(x,y,z) & = & x + y + z
\end{array}
$\begin{array}{lcr} z & = & a \\ f(x,y,z) & = & x + y + z \end{array}$
Breaking up a long expression so that it wraps when necessary

$f(x) \,\!$
$= \sum_{n=0}^\infty a_n x^n$
$= a_0+a_1x+a_2x^2+\cdots$



$f(x) \,\!$$= \sum_{n=0}^\infty a_n x^n$$= a_0 +a_1x+a_2x^2+\cdots$

Simultaneous equations
\begin{cases}
3x + 5y +  z \\
7x - 2y + 4z \\
-6x + 3y + 2z
\end{cases}
$\begin{cases} 3x + 5y + z \\ 7x - 2y + 4z \\ -6x + 3y + 2z \end{cases}$
Arrays
\begin{array}{|c|c||c|} a & b & S \\
\hline
0&0&1\\
0&1&1\\
1&0&1\\
1&1&0\\
\end{array}

$\begin{array}{|c|c||c|} a & b & S \\ \hline 0&0&1\\ 0&1&1\\ 1&0&1\\ 1&1&0\\ \end{array}$

### Parenthesizing big expressions, brackets, bars

Feature Syntax How it looks rendered
Bad ( \frac{1}{2} ) $( \frac{1}{2} )$
Good \left ( \frac{1}{2} \right ) $\left ( \frac{1}{2} \right )$

You can use various delimiters with \left and \right:

Feature Syntax How it looks rendered
Parentheses \left ( \frac{a}{b} \right ) $\left ( \frac{a}{b} \right )$
Brackets \left [ \frac{a}{b} \right ] \quad \left \lbrack \frac{a}{b} \right \rbrack $\left [ \frac{a}{b} \right ] \quad \left \lbrack \frac{a}{b} \right \rbrack$
Braces \left \{ \frac{a}{b} \right \} \quad \left \lbrace \frac{a}{b} \right \rbrace $\left \{ \frac{a}{b} \right \} \quad \left \lbrace \frac{a}{b} \right \rbrace$
Angle brackets \left \langle \frac{a}{b} \right \rangle $\left \langle \frac{a}{b} \right \rangle$
Bars and double bars \left | \frac{a}{b} \right \vert \left \Vert \frac{c}{d} \right \| $\left | \frac{a}{b} \right \vert \left \Vert \frac{c}{d} \right \|$
Floor and ceiling functions: \left \lfloor \frac{a}{b} \right \rfloor \left \lceil \frac{c}{d} \right \rceil $\left \lfloor \frac{a}{b} \right \rfloor \left \lceil \frac{c}{d} \right \rceil$
Slashes and backslashes \left / \frac{a}{b} \right \backslash $\left / \frac{a}{b} \right \backslash$
Up, down and up-down arrows \left \uparrow \frac{a}{b} \right \downarrow \quad \left \Uparrow \frac{a}{b} \right \Downarrow \quad \left \updownarrow \frac{a}{b} \right \Updownarrow $\left \uparrow \frac{a}{b} \right \downarrow \quad \left \Uparrow \frac{a}{b} \right \Downarrow \quad \left \updownarrow \frac{a}{b} \right \Updownarrow$
Delimiters can be mixed,
as long as \left and \right match
\left [ 0,1 \right )</code> <br/> <code>\left \langle \psi \right | $\left [ 0,1 \right )$
$\left \langle \psi \right |$
Use \left. and \right. if you don't
want a delimiter to appear:
\left . \frac{A}{B} \right \} \to X $\left . \frac{A}{B} \right \} \to X$
Size of the delimiters \big( \Big( \bigg( \Bigg( \dots \Bigg] \bigg] \Big] \big]/<code>  $\big( \Big( \bigg( \Bigg( \dots \Bigg] \bigg] \Big] \big]$
<code>\big\{ \Big\{ \bigg\{ \Bigg\{ \dots \Bigg\rangle \bigg\rangle \Big\rangle \big\rangle $\big\{ \Big\{ \bigg\{ \Bigg\{ \dots \Bigg\rangle \bigg\rangle \Big\rangle \big\rangle$
\big\| \Big\| \bigg\| \Bigg\| \dots \Bigg| \bigg| \Big| \big| $\big\| \Big\| \bigg\| \Bigg\| \dots \Bigg| \bigg| \Big| \big|$
\big\lfloor \Big\lfloor \bigg\lfloor \Bigg\lfloor \dots \Bigg\rceil \bigg\rceil \Big\rceil \big\rceil $\big\lfloor \Big\lfloor \bigg\lfloor \Bigg\lfloor \dots \Bigg\rceil \bigg\rceil \Big\rceil \big\rceil$
\big\uparrow \Big\uparrow \bigg\uparrow \Bigg\uparrow \dots \Bigg\Downarrow \bigg\Downarrow \Big\Downarrow \big\Downarrow $\big\uparrow \Big\uparrow \bigg\uparrow \Bigg\uparrow \dots \Bigg\Downarrow \bigg\Downarrow \Big\Downarrow \big\Downarrow$
\big\updownarrow \Big\updownarrow \bigg\updownarrow \Bigg\updownarrow \dots \Bigg\Updownarrow \bigg\Updownarrow \Big\Updownarrow \big\Updownarrow $\big\updownarrow \Big\updownarrow \bigg\updownarrow \Bigg\updownarrow \dots \Bigg\Updownarrow \bigg\Updownarrow \Big\Updownarrow \big\Updownarrow$
\big / \Big / \bigg / \Bigg / \dots \Bigg\backslash \bigg\backslash \Big\backslash \big\backslash $\big / \Big / \bigg / \Bigg / \dots \Bigg\backslash \bigg\backslash \Big\backslash \big\backslash$

## Alphabets and typefaces

Texvc cannot render arbitrary Unicode characters. Those it can handle can be entered by the expressions below. For others, such as Cyrillic, they can be entered as Unicode or HTML entities in running text, but cannot be used in displayed formulas.

Greek alphabet
\Alpha \Beta \Gamma \Delta \Epsilon \Zeta $\Alpha \Beta \Gamma \Delta \Epsilon \Zeta \,\!$
\Eta \Theta \Iota \Kappa \Lambda \Mu $\Eta \Theta \Iota \Kappa \Lambda \Mu \,\!$
\Nu \Xi \Pi \Rho \Sigma \Tau $\Nu \Xi \Pi \Rho \Sigma \Tau\,\!$
\Upsilon \Phi \Chi \Psi \Omega $\Upsilon \Phi \Chi \Psi \Omega \,\!$
\alpha \beta \gamma \delta \epsilon \zeta $\alpha \beta \gamma \delta \epsilon \zeta \,\!$
\eta \theta \iota \kappa \lambda \mu $\eta \theta \iota \kappa \lambda \mu \,\!$
\nu \xi \pi \rho \sigma \tau $\nu \xi \pi \rho \sigma \tau \,\!$
\upsilon \phi \chi \psi \omega $\upsilon \phi \chi \psi \omega \,\!$
\varepsilon \digamma \vartheta \varkappa $\varepsilon \digamma \vartheta \varkappa \,\!$
\varpi \varrho \varsigma \varphi $\varpi \varrho \varsigma \varphi\,\!$
Blackboard Bold/Scripts
\mathbb{A} \mathbb{B} \mathbb{C} \mathbb{D} \mathbb{E} \mathbb{F} \mathbb{G} $\mathbb{A} \mathbb{B} \mathbb{C} \mathbb{D} \mathbb{E} \mathbb{F} \mathbb{G} \,\!$
\mathbb{H} \mathbb{I} \mathbb{J} \mathbb{K} \mathbb{L} \mathbb{M} $\mathbb{H} \mathbb{I} \mathbb{J} \mathbb{K} \mathbb{L} \mathbb{M} \,\!$
\mathbb{N} \mathbb{O} \mathbb{P} \mathbb{Q} \mathbb{R} \mathbb{S} \mathbb{T} $\mathbb{N} \mathbb{O} \mathbb{P} \mathbb{Q} \mathbb{R} \mathbb{S} \mathbb{T} \,\!$
\mathbb{U} \mathbb{V} \mathbb{W} \mathbb{X} \mathbb{Y} \mathbb{Z} $\mathbb{U} \mathbb{V} \mathbb{W} \mathbb{X} \mathbb{Y} \mathbb{Z}\,\!$
boldface (vectors)
\mathbf{A} \mathbf{B} \mathbf{C} \mathbf{D} \mathbf{E} \mathbf{F} \mathbf{G} $\mathbf{A} \mathbf{B} \mathbf{C} \mathbf{D} \mathbf{E} \mathbf{F} \mathbf{G} \,\!$
\mathbf{H} \mathbf{I} \mathbf{J} \mathbf{K} \mathbf{L} \mathbf{M} $\mathbf{H} \mathbf{I} \mathbf{J} \mathbf{K} \mathbf{L} \mathbf{M} \,\!$
\mathbf{N} \mathbf{O} \mathbf{P} \mathbf{Q} \mathbf{R} \mathbf{S} \mathbf{T} $\mathbf{N} \mathbf{O} \mathbf{P} \mathbf{Q} \mathbf{R} \mathbf{S} \mathbf{T} \,\!$
\mathbf{U} \mathbf{V} \mathbf{W} \mathbf{X} \mathbf{Y} \mathbf{Z} $\mathbf{U} \mathbf{V} \mathbf{W} \mathbf{X} \mathbf{Y} \mathbf{Z} \,\!$
\mathbf{a} \mathbf{b} \mathbf{c} \mathbf{d} \mathbf{e} \mathbf{f} \mathbf{g} $\mathbf{a} \mathbf{b} \mathbf{c} \mathbf{d} \mathbf{e} \mathbf{f} \mathbf{g} \,\!$
\mathbf{h} \mathbf{i} \mathbf{j} \mathbf{k} \mathbf{l} \mathbf{m} $\mathbf{h} \mathbf{i} \mathbf{j} \mathbf{k} \mathbf{l} \mathbf{m} \,\!$
\mathbf{n} \mathbf{o} \mathbf{p} \mathbf{q} \mathbf{r} \mathbf{s} \mathbf{t} $\mathbf{n} \mathbf{o} \mathbf{p} \mathbf{q} \mathbf{r} \mathbf{s} \mathbf{t} \,\!$
\mathbf{u} \mathbf{v} \mathbf{w} \mathbf{x} \mathbf{y} \mathbf{z} $\mathbf{u} \mathbf{v} \mathbf{w} \mathbf{x} \mathbf{y} \mathbf{z} \,\!$
\mathbf{0} \mathbf{1} \mathbf{2} \mathbf{3} \mathbf{4} $\mathbf{0} \mathbf{1} \mathbf{2} \mathbf{3} \mathbf{4} \,\!$
\mathbf{5} \mathbf{6} \mathbf{7} \mathbf{8} \mathbf{9} $\mathbf{5} \mathbf{6} \mathbf{7} \mathbf{8} \mathbf{9}\,\!$
Boldface (greek)
\boldsymbol{\Alpha} \boldsymbol{\Beta} \boldsymbol{\Gamma} \boldsymbol{\Delta} \boldsymbol{\Epsilon} \boldsymbol{\Zeta} $\boldsymbol{\Alpha} \boldsymbol{\Beta} \boldsymbol{\Gamma} \boldsymbol{\Delta} \boldsymbol{\Epsilon} \boldsymbol{\Zeta} \,\!$
\boldsymbol{\Eta} \boldsymbol{\Theta} \boldsymbol{\Iota} \boldsymbol{\Kappa} \boldsymbol{\Lambda} \boldsymbol{\Mu} $\boldsymbol{\Eta} \boldsymbol{\Theta} \boldsymbol{\Iota} \boldsymbol{\Kappa} \boldsymbol{\Lambda} \boldsymbol{\Mu}\,\!$
\boldsymbol{\Nu} \boldsymbol{\Xi} \boldsymbol{\Pi} \boldsymbol{\Rho} \boldsymbol{\Sigma} \boldsymbol{\Tau} $\boldsymbol{\Nu} \boldsymbol{\Xi} \boldsymbol{\Pi} \boldsymbol{\Rho} \boldsymbol{\Sigma} \boldsymbol{\Tau}\,\!$
\boldsymbol{\Upsilon} \boldsymbol{\Phi} \boldsymbol{\Chi} \boldsymbol{\Psi} \boldsymbol{\Omega} $\boldsymbol{\Upsilon} \boldsymbol{\Phi} \boldsymbol{\Chi} \boldsymbol{\Psi} \boldsymbol{\Omega}\,\!$
\boldsymbol{\alpha} \boldsymbol{\beta} \boldsymbol{\gamma} \boldsymbol{\delta} \boldsymbol{\epsilon} \boldsymbol{\zeta} $\boldsymbol{\alpha} \boldsymbol{\beta} \boldsymbol{\gamma} \boldsymbol{\delta} \boldsymbol{\epsilon} \boldsymbol{\zeta}\,\!$
\boldsymbol{\eta} \boldsymbol{\theta} \boldsymbol{\iota} \boldsymbol{\kappa} \boldsymbol{\lambda} \boldsymbol{\mu} $\boldsymbol{\eta} \boldsymbol{\theta} \boldsymbol{\iota} \boldsymbol{\kappa} \boldsymbol{\lambda} \boldsymbol{\mu}\,\!$
\boldsymbol{\nu} \boldsymbol{\xi} \boldsymbol{\pi} \boldsymbol{\rho} \boldsymbol{\sigma} \boldsymbol{\tau} $\boldsymbol{\nu} \boldsymbol{\xi} \boldsymbol{\pi} \boldsymbol{\rho} \boldsymbol{\sigma} \boldsymbol{\tau}\,\!$
\boldsymbol{\upsilon} \boldsymbol{\phi} \boldsymbol{\chi} \boldsymbol{\psi} \boldsymbol{\omega} $\boldsymbol{\upsilon} \boldsymbol{\phi} \boldsymbol{\chi} \boldsymbol{\psi} \boldsymbol{\omega}\,\!$
\boldsymbol{\varepsilon} \boldsymbol{\digamma} \boldsymbol{\vartheta} \boldsymbol{\varkappa} $\boldsymbol{\varepsilon} \boldsymbol{\digamma} \boldsymbol{\vartheta} \boldsymbol{\varkappa} \,\!$
\boldsymbol{\varpi} \boldsymbol{\varrho} \boldsymbol{\varsigma} \boldsymbol{\varphi} $\boldsymbol{\varpi} \boldsymbol{\varrho} \boldsymbol{\varsigma} \boldsymbol{\varphi}\,\!$
Italics
\mathit{A} \mathit{B} \mathit{C} \mathit{D} \mathit{E} \mathit{F} \mathit{G} $\mathit{A} \mathit{B} \mathit{C} \mathit{D} \mathit{E} \mathit{F} \mathit{G} \,\!$
\mathit{H} \mathit{I} \mathit{J} \mathit{K} \mathit{L} \mathit{M} $\mathit{H} \mathit{I} \mathit{J} \mathit{K} \mathit{L} \mathit{M} \,\!$
\mathit{N} \mathit{O} \mathit{P} \mathit{Q} \mathit{R} \mathit{S} \mathit{T} $\mathit{N} \mathit{O} \mathit{P} \mathit{Q} \mathit{R} \mathit{S} \mathit{T} \,\!$
\mathit{U} \mathit{V} \mathit{W} \mathit{X} \mathit{Y} \mathit{Z} $\mathit{U} \mathit{V} \mathit{W} \mathit{X} \mathit{Y} \mathit{Z} \,\!$
\mathit{a} \mathit{b} \mathit{c} \mathit{d} \mathit{e} \mathit{f} \mathit{g} $\mathit{a} \mathit{b} \mathit{c} \mathit{d} \mathit{e} \mathit{f} \mathit{g} \,\!$
\mathit{h} \mathit{i} \mathit{j} \mathit{k} \mathit{l} \mathit{m} $\mathit{h} \mathit{i} \mathit{j} \mathit{k} \mathit{l} \mathit{m} \,\!$
\mathit{n} \mathit{o} \mathit{p} \mathit{q} \mathit{r} \mathit{s} \mathit{t} $\mathit{n} \mathit{o} \mathit{p} \mathit{q} \mathit{r} \mathit{s} \mathit{t} \,\!$
\mathit{u} \mathit{v} \mathit{w} \mathit{x} \mathit{y} \mathit{z} $\mathit{u} \mathit{v} \mathit{w} \mathit{x} \mathit{y} \mathit{z} \,\!$
\mathit{0} \mathit{1} \mathit{2} \mathit{3} \mathit{4} $\mathit{0} \mathit{1} \mathit{2} \mathit{3} \mathit{4} \,\!$
\mathit{5} \mathit{6} \mathit{7} \mathit{8} \mathit{9} $\mathit{5} \mathit{6} \mathit{7} \mathit{8} \mathit{9}\,\!$
Roman typeface
\mathrm{A} \mathrm{B} \mathrm{C} \mathrm{D} \mathrm{E} \mathrm{F} \mathrm{G} $\mathrm{A} \mathrm{B} \mathrm{C} \mathrm{D} \mathrm{E} \mathrm{F} \mathrm{G} \,\!$
\mathrm{H} \mathrm{I} \mathrm{J} \mathrm{K} \mathrm{L} \mathrm{M} $\mathrm{H} \mathrm{I} \mathrm{J} \mathrm{K} \mathrm{L} \mathrm{M} \,\!$
\mathrm{N} \mathrm{O} \mathrm{P} \mathrm{Q} \mathrm{R} \mathrm{S} \mathrm{T} $\mathrm{N} \mathrm{O} \mathrm{P} \mathrm{Q} \mathrm{R} \mathrm{S} \mathrm{T} \,\!$
\mathrm{U} \mathrm{V} \mathrm{W} \mathrm{X} \mathrm{Y} \mathrm{Z} $\mathrm{U} \mathrm{V} \mathrm{W} \mathrm{X} \mathrm{Y} \mathrm{Z} \,\!$
\mathrm{a} \mathrm{b} \mathrm{c} \mathrm{d} \mathrm{e} \mathrm{f} \mathrm{g} $\mathrm{a} \mathrm{b} \mathrm{c} \mathrm{d} \mathrm{e} \mathrm{f} \mathrm{g}\,\!$
\mathrm{h} \mathrm{i} \mathrm{j} \mathrm{k} \mathrm{l} \mathrm{m} $\mathrm{h} \mathrm{i} \mathrm{j} \mathrm{k} \mathrm{l} \mathrm{m} \,\!$
\mathrm{n} \mathrm{o} \mathrm{p} \mathrm{q} \mathrm{r} \mathrm{s} \mathrm{t} $\mathrm{n} \mathrm{o} \mathrm{p} \mathrm{q} \mathrm{r} \mathrm{s} \mathrm{t} \,\!$
\mathrm{u} \mathrm{v} \mathrm{w} \mathrm{x} \mathrm{y} \mathrm{z} $\mathrm{u} \mathrm{v} \mathrm{w} \mathrm{x} \mathrm{y} \mathrm{z} \,\!$
\mathrm{0} \mathrm{1} \mathrm{2} \mathrm{3} \mathrm{4} $\mathrm{0} \mathrm{1} \mathrm{2} \mathrm{3} \mathrm{4} \,\!$
\mathrm{5} \mathrm{6} \mathrm{7} \mathrm{8} \mathrm{9} $\mathrm{5} \mathrm{6} \mathrm{7} \mathrm{8} \mathrm{9}\,\!$
Fraktur typeface
\mathfrak{A} \mathfrak{B} \mathfrak{C} \mathfrak{D} \mathfrak{E} \mathfrak{F} \mathfrak{G} $\mathfrak{A} \mathfrak{B} \mathfrak{C} \mathfrak{D} \mathfrak{E} \mathfrak{F} \mathfrak{G} \,\!$
\mathfrak{H} \mathfrak{I} \mathfrak{J} \mathfrak{K} \mathfrak{L} \mathfrak{M} $\mathfrak{H} \mathfrak{I} \mathfrak{J} \mathfrak{K} \mathfrak{L} \mathfrak{M} \,\!$
\mathfrak{N} \mathfrak{O} \mathfrak{P} \mathfrak{Q} \mathfrak{R} \mathfrak{S} \mathfrak{T} $\mathfrak{N} \mathfrak{O} \mathfrak{P} \mathfrak{Q} \mathfrak{R} \mathfrak{S} \mathfrak{T} \,\!$
\mathfrak{U} \mathfrak{V} \mathfrak{W} \mathfrak{X} \mathfrak{Y} \mathfrak{Z} $\mathfrak{U} \mathfrak{V} \mathfrak{W} \mathfrak{X} \mathfrak{Y} \mathfrak{Z} \,\!$
\mathfrak{a} \mathfrak{b} \mathfrak{c} \mathfrak{d} \mathfrak{e} \mathfrak{f} \mathfrak{g} $\mathfrak{a} \mathfrak{b} \mathfrak{c} \mathfrak{d} \mathfrak{e} \mathfrak{f} \mathfrak{g} \,\!$
\mathfrak{h} \mathfrak{i} \mathfrak{j} \mathfrak{k} \mathfrak{l} \mathfrak{m} $\mathfrak{h} \mathfrak{i} \mathfrak{j} \mathfrak{k} \mathfrak{l} \mathfrak{m} \,\!$
\mathfrak{n} \mathfrak{o} \mathfrak{p} \mathfrak{q} \mathfrak{r} \mathfrak{s} \mathfrak{t} $\mathfrak{n} \mathfrak{o} \mathfrak{p} \mathfrak{q} \mathfrak{r} \mathfrak{s} \mathfrak{t} \,\!$
\mathfrak{u} \mathfrak{v} \mathfrak{w} \mathfrak{x} \mathfrak{y} \mathfrak{z} $\mathfrak{u} \mathfrak{v} \mathfrak{w} \mathfrak{x} \mathfrak{y} \mathfrak{z} \,\!$
\mathfrak{0} \mathfrak{1} \mathfrak{2} \mathfrak{3} \mathfrak{4} $\mathfrak{0} \mathfrak{1} \mathfrak{2} \mathfrak{3} \mathfrak{4} \,\!$
\mathfrak{5} \mathfrak{6} \mathfrak{7} \mathfrak{8} \mathfrak{9} $\mathfrak{5} \mathfrak{6} \mathfrak{7} \mathfrak{8} \mathfrak{9}\,\!$
Calligraphy/Script
\mathcal{A} \mathcal{B} \mathcal{C} \mathcal{D} \mathcal{E} \mathcal{F} \mathcal{G} $\mathcal{A} \mathcal{B} \mathcal{C} \mathcal{D} \mathcal{E} \mathcal{F} \mathcal{G} \,\!$
\mathcal{H} \mathcal{I} \mathcal{J} \mathcal{K} \mathcal{L} \mathcal{M} $\mathcal{H} \mathcal{I} \mathcal{J} \mathcal{K} \mathcal{L} \mathcal{M} \,\!$
\mathcal{N} \mathcal{O} \mathcal{P} \mathcal{Q} \mathcal{R} \mathcal{S} \mathcal{T} $\mathcal{N} \mathcal{O} \mathcal{P} \mathcal{Q} \mathcal{R} \mathcal{S} \mathcal{T} \,\!$
\mathcal{U} \mathcal{V} \mathcal{W} \mathcal{X} \mathcal{Y} \mathcal{Z} $\mathcal{U} \mathcal{V} \mathcal{W} \mathcal{X} \mathcal{Y} \mathcal{Z}\,\!$
Hebrew
\aleph \beth \gimel \daleth $\aleph \beth \gimel \daleth\,\!$
Feature Syntax How it looks rendered
non-italicised characters \mbox{abc} $\mbox{abc}$ $\mbox{abc} \,\!$
mixed italics (bad) \mbox{if} n \mbox{is even} $\mbox{if} n \mbox{is even}$ $\mbox{if} n \mbox{is even} \,\!$
mixed italics (good) \mbox{if }n\mbox{ is even} $\mbox{if }n\mbox{ is even}$ $\mbox{if }n\mbox{ is even} \,\!$
mixed italics (more legible: ~ is a non-breaking space, while "\ " forces a space) \mbox{if}~n\ \mbox{is even} $\mbox{if}~n\ \mbox{is even}$ $\mbox{if}~n\ \mbox{is even} \,\!$

## Color

Equations can use color:

• {\color{Blue}x^2}+{\color{YellowOrange}2x}-{\color{OliveGreen}1}
${\color{Blue}x^2}+{\color{YellowOrange}2x}-{\color{OliveGreen}1}$
• x_{1,2}=\frac{-b\pm\sqrt{\color{Red}b^2-4ac}}{2a}
$x_{1,2}=\frac{-b\pm\sqrt{\color{Red}b^2-4ac}}{2a}$

See here for all named colors supported by LaTeX.

Note that color should not be used as the only way to identify something, because it will become meaningless on black-and-white media or for color-blind people. See.

## Formatting issues

### Spacing

Note that TeX handles most spacing automatically, but you may sometimes want manual control.

Feature Syntax How it looks rendered
double quad space a \qquad b $a \qquad b$
quad space a \quad b $a \quad b$
text space a\ b $a\ b$
text space without PNG conversion a \mbox{ } b $a \mbox{ } b$
large space a\;b $a\;b$
medium space a\>b [not supported]
small space a\,b $a\,b$
no space ab $ab\,$
small negative space a\!b $a\!b$

### Alignment with normal text flow

Due to the default css

img.tex { vertical-align: middle; }

an inline expression like $\int_{-N}^{N} e^x\, dx$ should look good.

If you need to align it otherwise, use <math style="vertical-align:-100%;">...[/itex] and play with the vertical-align argument until you get it right; however, how it looks may depend on the browser and the browser settings.

Also note that if you rely on this workaround, if/when the rendering on the server gets fixed in future releases, as a result of this extra manual offset your formulae will suddenly be aligned incorrectly. So use it sparingly, if at all.

### Examples

A sample conforming diagram is commons:Image:PSU-PU.svg.

## Examples

$ax^2 + bx + c = 0$

$ax^2 + bx + c = 0$


### Quadratic Polynomial (Force PNG Rendering)

$ax^2 + bx + c = 0\,\!$

$ax^2 + bx + c = 0\,\!$


$x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}$

$x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}$


### Tall Parentheses and Fractions

$2 = \left( \frac{\left(3-x\right) \times 2}{3-x} \right)$

$2 = \left( \frac{\left(3-x\right) \times 2}{3-x} \right)$

$S_{\text{new}} = S_{\text{old}} - \frac{ \left( 5-T \right) ^2} {2}$

$S_{\text{new}} = S_{\text{old}} - \frac{ \left( 5-T \right) ^2} {2}$



### Integrals

$\int_a^x \int_a^s f(y)\,dy\,ds = \int_a^x f(y)(x-y)\,dy$

$\int_a^x \int_a^s f(y)\,dy\,ds = \int_a^x f(y)(x-y)\,dy$


### Summation

$\sum_{m=1}^\infty\sum_{n=1}^\infty\frac{m^2\,n}{3^m\left(m\,3^n+n\,3^m\right)}$

$\sum_{m=1}^\infty\sum_{n=1}^\infty\frac{m^2\,n} {3^m\left(m\,3^n+n\,3^m\right)}$


### Differential Equation

$u'' + p(x)u' + q(x)u=f(x),\quad x\gta$

$u'' + p(x)u' + q(x)u=f(x),\quad x>a$


### Complex numbers

$|\bar{z}| = |z|, |(\bar{z})^n| = |z|^n, \arg(z^n) = n \arg(z)$

$|\bar{z}| = |z|, |(\bar{z})^n| = |z|^n, \arg(z^n) = n \arg(z)$


### Limits

$\lim_{z\rightarrow z_0} f(z)=f(z_0)$

$\lim_{z\rightarrow z_0} f(z)=f(z_0)$


### Integral Equation

$\phi_n(\kappa) = \frac{1}{4\pi^2\kappa^2} \int_0^\infty \frac{\sin(\kappa R)}{\kappa R} \frac{\partial}{\partial R} \left[R^2\frac{\partial D_n(R)}{\partial R}\right]\,dR$

$\phi_n(\kappa) = \frac{1}{4\pi^2\kappa^2} \int_0^\infty \frac{\sin(\kappa R)}{\kappa R} \frac{\partial}{\partial R} \left[R^2\frac{\partial D_n(R)}{\partial R}\right]\,dR$


### Example

$\phi_n(\kappa) = 0.033C_n^2\kappa^{-11/3},\quad \frac{1}{L_0}\ll\kappa\ll\frac{1}{l_0}$

$\phi_n(\kappa) = 0.033C_n^2\kappa^{-11/3},\quad \frac{1}{L_0}\ll\kappa\ll\frac{1}{l_0}$


### Continuation and cases

$f(x) = \begin{cases}1 & -1 \le x \lt 0 \\ \frac{1}{2} & x = 0 \\ 1 - x^2 & \mbox{otherwise}\end{cases}$

$f(x) = \begin{cases} 1 & -1 \le x < 0 \\ \frac{1}{2} & x = 0 \\ 1 - x^2 & \mbox{otherwise} \end{cases}$


### Prefixed subscript

${}_pF_q(a_1,...,a_p;c_1,...,c_q;z) = \sum_{n=0}^\infty \frac{(a_1)_n\cdot\cdot\cdot(a_p)_n}{(c_1)_n\cdot\cdot\cdot(c_q)_n}\frac{z^n}{n!}$

${}_pF_q(a_1,...,a_p;c_1,...,c_q;z) = \sum_{n=0}^\infty \frac{(a_1)_n\cdot\cdot\cdot(a_p)_n}{(c_1)_n\cdot\cdot\cdot(c_q)_n} \frac{z^n}{n!}$


### Fraction and small fraction

$\frac {a}{b}$   $\tfrac {a}{b}$
$\frac {a}{b}\ \tfrac {a}{b}$


### Table 40: Binary Operators

Code Output Code Output Code Output Code Output
\amalg $\amalg$ \cup $\cup$ \oplus $\oplus$ \times $\times$
\ast $\ast$ \dagger $\dagger$ \oslash $\oslash$ \triangleleft $\triangleleft$
\bigcirc $\bigcirc$ \ddagger $\ddagger$ \otimes $\otimes$ \triangleright $\triangleright$
\bigtriangledown $\bigtriangledown$ \diamond $\diamond$ \pm $\pm$ \unlhd * $\unlhd$
\bigtriangleup $\bigtriangleup$ \div $\div$ \rhd * $\rhd$ \unrhd * $\unrhd$
\bullet $\bullet$ \lhd * $\lhd$ \setminus $\setminus$ \uplus $\uplus$
\cap $\cap$ \mp $\mp$ \sqcap $\sqcap$ \vee $\vee$
\cdot $\cdot$ \odot $\odot$ \sqcup $\sqcup$ \wedge $\wedge$
\circ $\circ$ \ominus $\ominus$ \star $\star$ \wr $\wr$

* Not predefined in $\mathrm{L\!\!^{{}_{\scriptstyle A}} \!\!\!\!\!\;\; T\!_{\displaystyle E} \! X} \, 2_{\displaystyle \varepsilon}$. One of the packages latexsym, amsfonts, amssymb, txfonts, pxfonts, or wasysym is required.

### Table 41: AMS Binary Operators

Code Output Code Output Code Output
\barwedge $\barwedge$ \circledcirc $\circledcirc$ \intercal $\intercal$
\boxdot $\boxdot$ \circleddash $\circleddash$ \leftthreetimes $\leftthreetimes$
\boxminus $\boxminus$ \Cup $\Cup$ \ltimes $\ltimes$
\boxplus $\boxplus$ \curlyvee $\curlyvee$ \rightthreetimes $\rightthreetimes$
\boxtimes $\boxtimes$ \curlywedge $\curlywedge$ \rtimes $\rtimes$
\Cap $\Cap$ \divideontimes $\divideontimes$ \smallsetminus $\smallsetminus$
\centerdot $\centerdot$ \dotplus $\dotplus$ \veebar $\veebar$
\circledast $\circledast$ \doublebarwedge $\doublebarwedge$ 

### Table 42: stmaryrd Binary Operators

Code Output Code Output Code Output Code Output
\baro $\baro$ \bbslash $\bbslash$ \binampersand $\binampersand$ \bindnasrepma $\bindnasrepma$
\boxast $\boxast$ \boxbar $\boxbar$ \boxbox $\boxbox$ \boxbslash $\boxbslash$
\boxcircle $\boxcircle$ \boxdot $\boxdot$ \boxempty $\boxempty$ \boxslash $\boxslash$
\curlyveedownarrow $\curlyveedownarrow$ \curlyveeuparrow $\curlyveeuparrow$ \curlywedgedownarrow $\curlywedgedownarrow$ \curlywedgeuparrow $\curlywedgeuparrow$
\fatbslash $\fatbslash$ \fatsemi $\fatsemi$ \fatslash $\fatslash$ \interleave $\interleave$
\leftslice $\leftslice$ \merge $\merge$ \minuso $\minuso$ \moo $\moo$
\nplus $\nplus$ \obar $\obar$ \oblong $\oblong$ \obslash $\obslash$
\ogreaterthan $\ogreaterthan$ \olessthan $\olessthan$ \ovee $\ovee$ \owedge $\owedge$
\rightslice $\rightslice$ \sslash $\sslash$ \talloblong $\talloblong$ \varbigcirc $\varbigcirc$
\varcurlyvee $\varcurlyvee$ \varcurlywedge $\varcurlywedge$ \varoast $\varoast$ \varobar $\varobar$
\varobslash $\varobslash$ \varocircle $\varocircle$ \varodot $\varodot$ \varogreaterthan $\varogreaterthan$
\varolessthan $\varolessthan$ \varominus $\varominus$ \varoplus $\varoplus$ \varoslash $\varoslash$
\varotimes $\varotimes$ \varovee $\varovee$ \varowedge $\varowedge$ \vartimes $\vartimes$
\Ydown $\Ydown$ \Yleft $\Yleft$ \Yright $\Yright$ \Yup $\Yup$

### Table 43: wasysym Binary Operators

Code Output Code Output Code Output Code Output
\lhd $\lhd$ \ocircle $\ocircle$ \RHD $\RHD$ \unrhd $\unrhd$
\LHD $\LHD$ \rhd $\rhd$ \unlhd $\unlhd$ 

### Table 44: txfonts/pxfonts Binary Operators

Code Output Code Output Code Output
\circledbar $\circledbar$ \circledwedge $\circledwedge$ \medcirc $\medcirc$
\circledbslash $\circledbslash$ \invamp $\invamp$ \sqcapplus $\sqcapplus$
\circledvee $\circledvee$ \medbullet $\medbullet$ \sqcupplus $\sqcupplus$

### Table 45: mathabx Binary Operators

Code Output Code Output Code Output
\ast $\ast$ \curlywedge $\curlywedge$ \sqcap $\sqcap$
\Asterisk $\Asterisk$ \divdot $\divdot$ \sqcup $\sqcup$
\barwedge $\barwedge$ \divideontimes $\divideontimes$ \sqdoublecap $\sqdoublecap$
\bigstar $\bigstar$ \dotdiv $\dotdiv$ \sqdoublecup $\sqdoublecup$
\bigvarstar $\bigvarstar$ \dotplus $\dotplus$ \square $\square$
\blackdiamond $\blackdiamond$ \dottimes $\dottimes$ \squplus $\squplus$
\cap $\cap$ \doublebarwedge $\doublebarwedge$ \udot $\udot$
\circplus $\circplus$ \doublecap $\doublecap$ \uplus $\uplus$
\coasterisk $\coasterisk$ \doublecup $\doublecup$ \varstar $\varstar$
\coAsterisk $\coAsterisk$ \ltimes $\ltimes$ \vee $\vee$
\convolution $\convolution$ \pluscirc $\pluscirc$ \veebar $\veebar$
\cup $\cup$ \rtimes $\rtimes$ \veedoublebar $\veedoublebar$
\curlyvee $\curlyvee$ \sqbullet $\sqbullet$ \wedge $\wedge$

### Table 49: ulsy Geometric Binary Operators

Code Output
\odplus $\odplus$

### Table 50: mathabx Geometric Binary Operators

Code Output Code Output Code Output
\blacktriangledown $\blacktriangledown$ \boxright $\boxright$ \ominus $\ominus$
\blacktriangleleft $\blacktriangleleft$ \boxslash $\boxslash$ \oplus $\oplus$
\blacktriangleright $\blacktriangleright$ \boxtimes $\boxtimes$ \oright $\oright$
\blacktriangleup $\blacktriangleup$ \boxtop $\boxtop$ \oslash $\oslash$
\boxasterisk $\boxasterisk$ \boxtriangleup $\boxtriangleup$ \otimes $\otimes$
\boxbackslash $\boxbackslash$ \boxvoid $\boxvoid$ \otop $\otop$
\boxbot $\boxbot$ \oasterisk $\oasterisk$ \otriangleup $\otriangleup$
\boxcirc $\boxcirc$ \obackslash $\obackslash$ \ovoid $\ovoid$
\boxcoasterisk $\boxcoasterisk$ \obot $\obot$ \smalltriangledown $\smalltriangledown$
\boxdiv $\boxdiv$ \ocirc $\ocirc$ \smalltriangleleft $\smalltriangleleft$
\boxdot $\boxdot$ \ocoasterisk $\ocoasterisk$ \smalltriangleright $\smalltriangleright$
\boxleft $\boxleft$ \odiv $\odiv$ \smalltriangleup $\smalltriangleup$
\boxminus $\boxminus$ \odot $\odot$ 
\boxplus $\boxplus$ \oleft $\oleft$ 

### Table 52: Variable-sized Math Operators

Code Output Code Output Code Output Code Output
\bigcap $\bigcap$ \bigotimes $\bigotimes$ \bigwedge $\bigwedge$ \prod $\prod$
\bigcup $\bigcup$ \bigsqcup $\bigsqcup$ \coprod $\coprod$ \sum $\sum$
\bigodot $\bigodot$ \biguplus $\biguplus$ \int $\int$ 
\bigoplus $\bigoplus$ \bigvee $\bigvee$ \oint $\oint$ 

### Table 53: AMS Variable-sized Math Operators

Code Output Code Output
\idotsint $\idotsint$ \iiint $\iiint$
\iiiint $\iiiint$ \iint $\iint$

### Table 54: stmaryrd Variable-sized Math Operators

Code Output Code Output
\bigbox $\bigbox$ \biginterleave $\biginterleave$ \bigsqcap $\bigsqcap$
\bigcurlyvee $\bigcurlyvee$ \bignplus $\bignplus$ \bigtriangledown $\bigtriangledown$
\bigcurlywedge $\bigcurlywedge$ \bigparallel $\bigparallel$ \bigtriangleup $\bigtriangleup$

### Table 55: wasysym Variable-sized Math Operators

Code Output Code Output Code Output
\iiint $\iiint$ \oiint $\oiint$ \varoint $\varoint$
\iint $\iint$ \varint $\varint$ 

### Table 101: stmaryrd Arrows

Code Output Code Output Code Output
\leftarrowtriangle $\leftarrowtriangle$ \Mapsfrom $\Mapsfrom$ \shortleftarrow $\shortleftarrow$
\leftrightarroweq $\leftrightarroweq$ \mapsfrom $\mapsfrom$ \shortrightarrow $\shortrightarrow$
\leftrightarrowtriangle $\leftrightarrowtriangle$ \Mapsto $\Mapsto$ \shortuparrow $\shortuparrow$
\lightning $\lightning$ \nnearrow $\nnearrow$ \ssearrow $\ssearrow$
\Longmapsfrom $\Longmapsfrom$ \nnwarrow $\nnwarrow$ \sswarrow $\sswarrow$
\longmapsfrom $\longmapsfrom$ \rightarrowtriangle $\rightarrowtriangle$ 
\Longmapsto $\Longmapsto$ \shortdownarrow $\shortdownarrow$ 

### Table 105: mathabx Harpoons

Code Output Code Output Code Output Code Output
\barleftharpoon $\barleftharpoon$ \barrightharpoon $\barrightharpoon$ \downdownharpoons $\downdownharpoons$ \downharpoonleft $\downharpoonleft$
\downharpoonright $\downharpoonright$ \downupharpoons $\downupharpoons$ \leftbarharpoon $\leftbarharpoon$ \leftharpoondown $\leftharpoondown$
\leftharpoonup $\leftharpoonup$ \leftleftharpoons $\leftleftharpoons$ \leftrightharpoon $\leftrightharpoon$ \leftrightharpoons $\leftrightharpoons$
\rightbarharpoon $\rightbarharpoon$ \rightharpoondown $\rightharpoondown$ \rightharpoonup $\rightharpoonup$ \rightleftharpoon $\rightleftharpoon$
\rightleftharpoons $\rightleftharpoons$ \rightrightharpoons $\rightrightharpoons$ \updownharpoons $\updownharpoons$ \upharpoonleft $\upharpoonleft$
\upharpoonright $\upharpoonright$ \upupharpoons $\upupharpoons$  

### Table 156: yhmath Math-Mode Accents

Code Output Code Output
 
 
 
 
 

### Table 157: Extensible Accents

Code Output Code Output
\widetilde{abc} * $\widetilde{abc}$ \overleftarrow{abc} $\overleftarrow{abc}$
\overline{abc} $\overline{abc}$ \overbrace{abc} $\overbrace{abc}$
\sqrt{abc} $\sqrt{abc}$ \widehat{abc} $\widehat{abc}$
\overrightarrow{abc} $\overrightarrow{abc}$ \underline{abc} $\underline{abc}$
\underbrace{abc} $\underbrace{abc}$ \sqrt[n]{abc} $\sqrt[n]{abc}$

* The yhmath package is required.

### Table 159: yhmath Extensible Accents

Code Output Code Output
\wideparen{abc} $\wideparen{abc}$ \widetriangle{abc} $\widetriangle{abc}$
\widering{abc} $\widering{abc}$

### Table 160: AMS Extensible Accents

Code Output Code Output
\overleftrightarrow{abc} $\overleftrightarrow{abc}$ \underleftrightarrow{abc} $\underleftrightarrow{abc}$
\underleftarrow{abc} $\underleftarrow{abc}$ \underrightarrow{abc} $\underrightarrow{abc}$
\xleftarrow{abc} $\xleftarrow{abc}$ \xrightarrow{abc} $\xrightarrow{abc}$

### Table 163 mathabx Extensible Accents

Code Output Code Output
\overbrace{abc} $\overbrace{abc}$ \widebar{abc} $\widebar{abc}$
\overgroup{abc} $\overgroup{abc}$ \widecheck{abc} $\widecheck{abc}$
\underbrace{abc} $\underbrace{abc}$ \wideparen{abc} $\wideparen{abc}$
\undergroup{abc} $\undergroup{abc}$ \widering{abc} $\widering{abc}$
\widearrow{abc} $\widearrow{abc}$ 

The braces shown for \overbrace and \underbrace appear in their minimum size. They can expand arbitrarily wide, however.

### Table 164: esvect Extensible Accents

Code Output Code Output
\vv{abc} with package option a $\vv{abc}$ \vv{abc} with package option b $\vv{abc}$
\vv{abc} with package option c $\vv{abc}$ \vv{abc} with package option d $\vv{abc}$
\vv{abc} with package option e $\vv{abc}$ \vv{abc} with package option f $\vv{abc}$
\vv{abc} with package option g $\vv{abc}$ \vv{abc} with package option h $\vv{abc}$

esvect also defines a \vv* macro which is used to typeset arrows over vector variables with subscripts.

### Table 174: Dots

Code Output Code Output
\cdotp $\cdotp$ \colon * $\colon$
\ldotp $\ldotp$ \vdots $\vdots$
\cdots $\cdots$ \ddots $\ddots$
\ldots $\ldots$ 

* While “:” is valid in math mode, \colon uses different surrounding spacing.

### Table 175: AMS Dots

Code Output Code Output
\dotsb $\dotsb$ \dotsi $\dotsi$
\dotso $\dotso$ \dotsc $\dotsc$
\dotsm $\dotsm$ 

 Work in progress, expect frequent changes. Help and feedback is welcome. See discussion page.