# User:Zlodziejka

i am a student at giselagymnasium

Block quote

=Sandbox=

x(t) = x0+vt

$\Delta x$ = v $\Delta t$

v = $\frac {x}{t}$

v = $\frac{x_1 - x_0}{\Delta t}$

x1 (t) = x2 (t)

x1 + v1t = x2 + v2t

x1 - x2 = (v2 - v1) * t

t = $\frac{x_1 - x_2}{v_2 - v_1}$

= $\frac{173m - 25m}{28\ltmath\gt\frac{km}{h}$}[/itex]

a) ges: Fahrzeuggeschwindigkeit
$\Delta x$ = 0 - 168 m = - 168m
$\Delta t$ = 12,5 sekunden

$\frac{\Delta x}{\Delta t}$ = v
v = - 13,44m/s = -48,3km/h b) t = 2 min 53 sek

168m + ( -13,4m/s ) 173s

= - 2,16km

Schön, dass Sie an der Lösung dieser Aufgabe gearbeitet haben!--White Eagle 12:11, 22 October 2007 (CEST)

c) t =

übersetzung:

it follows in this case:

a= $\frac{v}{t}$

(movement with constant aceleration from that rests)

if the venture owns already at the beginning of the movement a beginning speed $v_0$ so the functional equation is

v(t) = $v_0$ + at

the graph is origin-straight a postponed:

(1) $\Delta t$

(2) $\Delta v$

(3) $v_0$

(4) $t_0$

It turns out for a>0 a movement with consistently acceleration, for a<0 a movement with consistently speed and for a=0 a movement with consistently delay ( falling graph)

!Attention! This time the formula a = $\frac{v}{t}$ is wrong!!

To be used is:

a is also the gradient of the line.

Definition:The acceleration a is the gradient of the t-v-line.

The unit of the acceleration is m/s².

2.3: Accelerationtest

Time it in s Speed v in m/s
0 0

5 1

A testinstitution analyses the movement of a vehicle.The results are:

a) Draw a t-v-diagramm! (10s=1 cm, 1m/s=1 cm)

b) Name the type of movement in the particular timezones!

c) Find out the accelerations by using the graph!

5.7 a) geg: r = 1,0 m ges : v

F(gewicht) = F(zentral)

m w2 r = m g /:m

w 2 = r g

w 2 = g : r

w 2 = 9,81 N/Kg : 1,0m

w = $9,81$

w = 3,13

v = w r

v = 3,13 * 1m

v = 3,13 m/s

b)

Rotor auf dem oktoberfest, mit Durchmesser d ,Boden wird abgesenkt ohne dass Körper (m= ...)abgleitet Welche Geschwindigkeit(wand)??