# User:Chris1727

    =Sandbox=


Text

Kursiv

$x(t)=x_0 + vt$

$\Delta x = v \Delta t$

$v = \frac{x}{t}$

$v = \frac{x_1 - x_0}{\Delta t}$

$x_1(t) = x_2(t)$ [/itex] $x_1 + v_1 t = x_2 + v_2 t$

$x_1 - x_2 = (v_2 - v_1) t$

$t = \frac{x_1 - x_2}{v_2 - v_1} = \frac{173 m - 25 m}{28 km /h - 11 km/h}$

= Aufgabe 1.10 =


b)

Schön, dass Sie an der Lösung dieser Aufgabe gearbeitet haben!--White Eagle 12:12, 22 October 2007 (CEST)

$x_1 = x_0 + v t$

$x_1 = 47.7km + 45 \frac{m}{s} 4870s$

$x_1 = 266.9km$

Geschwindigkeit PKW

$v_2 = \frac{\Delta x }{\Delta t } = \frac{266.9km - 15.2km}{4800s} = 52.4 \frac{m}{s}$

c)

aus b) folgt:


266.9km - 47.7km = 219.2km = Strecke des LKW

266.9km - 15.2km = 251.7km = Strecke des PKW

# Übersetzung

It follows in this case:

$a =\frac{v}{t}$

(Movement with constant acceleration from that rests)

If the venture has already at the beginning of the movement a beginning speed $v_0$ so the functional equation is

$v(t) = v_0 + a t$

The graph is a postponed origin-straight

$(1)\Delta t$

$(2)\Delta v$

$(3)v_0$

$(4) t_0$

It tourns out for a>0 a movement with acceleration,for a = 0 a movement with constant speed and for a<0 a movement with constant delay(falling graph)

!Attention! This time the formula$a = \frac{v}{t}$ is wrong!!

To be used is:

$a = \frac{\Delta v}{\Delta t}$

a is also the gradient of the line

Definition: The accleretation a is the gradient of the t-v-graph

The unit of the acceleration is m/s²

# Problem 2.3: Accelerationtest

A testinstitution analyses the movement of a vehicle.The results are:

Time t in s Speed v in m/s
0 5 10 60 80 100 110 120 130
0 1 2 12 12 12 8 4 0
a) Draw a t-v-diagramm! (10s=1 cm, 1m/s=1 cm)

b) Name the type of movement in the particular timezones!

c) Find out the accelerations by using the graph!