Trigonometric Ratios of Complementary Angles

From WikiEducator
Jump to: navigation, search



Name

Trigonometric ratios of Complementary Angles
Figure Let
TR07.png [math]\triangle AOH:\,[/math]


[math]O=\text{ side adjacent to angle }\theta\,[/math]

[math]A=\text{ side opposite to angle }\theta\,[/math]

[math]H=\text{ hypotenuse}\,[/math]

[math]\delta=90-\theta\,[/math]


Trigonometrical

ratio of angle

[math]\theta\;[/math]
Trigonometrical

ratio of complementary angle

[math]\delta=90-\theta\;[/math]
Formulas
[math]\sin \theta=\frac{O}{H}[/math] [math]\cos \delta=\frac{O}{H}[/math] [math]\sin \theta=\cos \delta\,[/math] [math]\sin \theta=\cos (90-\theta)\,[/math]
[math]\cos \theta=\frac{A}{H}[/math] [math]\sin \delta=\frac{A}{H}[/math] [math]\cos \theta=\sin \delta\,[/math] [math]\cos \theta=\sin (90-\theta)\,[/math]
[math]\tan \theta=\frac{O}{A}[/math] [math]\cot \delta=\frac{O}{A}[/math] [math]\tan \theta=\cot \delta\,[/math] [math]\tan \theta=\cot (90-\theta)\,[/math]
[math]\cot \theta=\frac{A}{O}[/math] [math]\tan \delta=\frac{A}{O}[/math] [math]\cot \theta=\tan \delta\,[/math] [math]\cot \theta=\tan (90-\theta)\,[/math]
[math]\sec \theta=\frac{H}{A}[/math] [math]\csc \delta=\frac{H}{A}[/math] [math]\sec \theta=\csc \delta\,[/math] [math]\sec \theta=\csc (90-\theta)\,[/math]
[math]\csc \theta=\frac{H}{O}[/math] [math]\sec \delta=\frac{H}{O}[/math] [math]\csc \theta=\sec \delta\,[/math] [math]\csc \theta=\sec (90-\theta)\,[/math]



Usage

  • Write here usage for the table


See Also

  • List here internal links


Icon inter.gif

Web Resources

  • Write here links for external references