Logarithm (Base a)
From WikiEducator
This glossary is far from complete. We are constantly adding math terms.
For instructions on adding new terms, please refer to Math Glossary Main Page
Logarithm (Base a)
The logarithm of [math]x\,[/math] to the base [math]a\,[/math], denoted by [math]log_{a}x\,[/math], is that real number [math]u\,[/math] such that [math]a^u=x\,[/math] , where [math]x\gt0\,[/math] and [math]a\,[/math] is a positive constant other than [math]1\,[/math].
|
Examples
- [math]10\,000=10^4\,[/math]. The exponent to which we raise [math]10\,[/math] to get [math]10\,000\,[/math] is [math]4\,[/math], so [math]\log_{10}10\,000=4\,[/math]
- [math]8=2^3\,[/math]. The exponent to which we raise [math]2\,[/math] to get [math]8\,[/math] is [math]3\,[/math], so [math]\log_{2}8=3\,[/math]
- [math]1=6^0\,[/math]. The exponent to which we raise [math]6\,[/math] to get [math]1\,[/math] is [math]0\,[/math], so [math]\log_{6}1=0.\,[/math]
- [math]3=\sqrt{9}=9^{\tfrac {1}{2}}[/math]. The exponent to which we raise [math]9\,[/math] to get [math]3\,[/math] is [math]\tfrac {1}{2}\,[/math], so [math]\log_{9}3=\tfrac {1}{2}\,[/math]
- [math]8=8^1\,[/math]. The exponent to which we raise [math]8\,[/math] to get [math]8\,[/math] is [math]1\,[/math], so [math]\log_{8}8=1\,[/math]