TABLE OF CONTENTS

UNIT 1 LINEAR PROGRAMMING

Session 1: Introduction

Session 2: What is Linear Programming

Session 3: Applications of Linear Programming

Session 4: Examples of Linear Programming problems

Session 5: Requirements of Linear Programming Problems

Session 6: Assumptions Linear Programming

Session 7: Terminologies

Session 8: Standard form of the Model

Session 9: Formulating Linear Programming Problems

Session 10: Solving linear programming: Graphical Method

Session 11: Sensitivity analysis

Session 12: Dual (Shadow) Prices

UNIT 2 TRANSPORTATION PROBLEM

Session 2.1: Introduction

Session 2.2: Terminologies

Session 2.3: Transportation problem

Session 2.4: Balancing a transportation problem

Session 2.5: Initial feasible solution

Session 2.6: Finding the optimum solution

UNIT 3 ASSIGNMENT PROBLEM

Session 2.1: Introduction

Session 2.2: Solution of Minimization Assignment Problem

Session 2.3: Solution of Maximization Assignment Problem

Session 4.2: Critical path analysis CPM limitations Session 4.3: Terminologies Session 4.4: Notations for drawing network diagrams Session 4.5: Constructing network diagrams Session 4.6: Activity on node (AON) diagrams Session 4.7: Critical path Session 4.8: Early times Session 4.9: Late times Session 4.10: Float Session 4.11: Project time reduction Session 4.12: Activity on arc (AOA) diagrams Session 4.13: Program Evaluation and Review technique(PERT) UNIT 5 **INVENTORY CONTROL** Session 5.1: Introduction to inventory control Session 5.2: Types of Inventory Session 5.3: **Terminologies** Session 5.4: The Functions of Inventory Session 5.5: **Inventory Policies** Session 5.6: Inventory Models/Systems Session 5.7: Economic Order Quantity (EOQ) model UNIT 6 WAITING LINES/ QUEUING THEORY Session 6.1: Introduction Session 6.2: Poisson Distribution Session 6.3: Characteristics of waiting line systems Session 6.4: Measuring the Queue's performance

Suggestions for Managing Queues

NETWORK ANALYSIS

Introduction

UNIT 4

Session 4.1:

Session 6.5:

UNIT 7 SIMULATION

Session 7.1: Introduction

Session 7.2: Problem definition

Session 7.3: Constructing a Simulation problem

Session 7.4: Specification of Variables and Parameters

Session 7.5: Specification of Decision Rules

Session 7.6: Specification of Probability Distribution

Session 7.7: Specification of Time-Incrementing Procedure

Session 7.8: Determining Starting Conditions

Session 7.9: Determining Run Length

Session 7.10: Evaluating Results

Session 7.11: Validation

Session 7.12: Mounte Carlo Simulation

UNIT 8 LINEAR PROGRAMMING: SIMPLEX METHOD

Session 8.1: Introduction

Session 8.2: Standard form of LP problems

Session 8.3: Solving LP problems

Session 8.4: Interpreting the Simplex Tableau