
Performance
Optimisations

Angelo D’ Agnano

John Kostaras

∗ Performance Monitoring

∗ an activity of nonintrusively collecting or observing
performance data from a running application

∗ Performance Profiling

∗ an activity of collecting performance data from a running
application that may be intrusive on application
performance responsiveness or throughput

∗ Performance Tuning

∗ an activity of changing tuneables, source code, or
configuration attribute(s) for the purposes of improving
application responsiveness or throughput

15/9/2012 Analysing heap dumps and optimising performance 2

Performance activities

∗ CPU
∗ Graphical

∗ gnome-system-monitor, xosview (Unix/Linux)

∗ cpubar (Solaris)

∗ TaskManager, Performance Monitor (Windows)

∗ Text

∗ vmstat, mpstat, pidstat, top

∗prstat (Solaris)

∗ typeperf (Windows)

15/9/2012 Analysing heap dumps and optimising performance 3

OS Performance Monitoring

∗Memory
∗ vmstat
∗ cpubar (Solaris)
∗ Performance Monitor, typeperf (Windows)

∗Network
∗ nicstat, typeperf (Windows)

∗ I/O
∗ iostat, iosnoop.d (Solaris)

∗Other
∗ sar (sysstat), kstat (Solaris), cpustat, cputrack

15/9/2012 Analysing heap dumps and optimising performance 4

OS Performance Monitoring
(cont.)

� Method profiler

� Collects information about method execution times

� Look for: internal/external method times, frequently
called methods/classes etc.

� Memory profiler

� Collects information about object creation and/or
garbage collection

� Thread profiler

� Looks for thread conflict situations

15/9/2012 Analysing heap dumps and optimising performance 5

Performance Profiling -
Types of Profilers

� Method profilers
� Oracle Solaris Studio Performance Analyzer, HPJMeter,

JVisualVM
� Free: java -agentlib:hprof=[help]|[<option>=<value>, ...], jvmstat,

JRockit Runtime Analyzer
� Commercial: JProbe, OptimizeIt!, JProfiler, YourKit

� Memory profilers
� Oracle Solaris Studio Performance Analyzer
� HPJMeter
� JVisualVM

� Thread profilers
� JVisualVM
� Google’s JChord, Java Race Finder, Mutability Detector, YourKit

15/9/2012 Analysing heap dumps and optimising performance 6

Performance Profiling -
Profilers

∗A soft real-time Java application based
on NetBeans RCP

∗Displays plots and tracks on a digital
map

∗Requirement to run on SunBlade 1500
(1 CPU 1.062 GHz UltraSPARC, 1 GB
RAM)

A few things about the
application to optimise

15/9/2012 Analysing heap dumps and optimising performance 7

1) Research of root causes
∗ Analysis of GC impact
∗ Verification of lock contention
∗ Hotspots in application code

2) Profile main branch application
3) Identification of hotspots
4) Optimisation of hotspots
5) Performance measurement with & without

changes
6) Integration of changes
7) Restart from point 1

15/9/2012 Analysing heap dumps and optimising performance 8

Steps executed

CPU Performance Monitoring

15/9/2012 Analysing heap dumps and optimising performance 9

15/9/2012 Analysing heap dumps and optimising performance 10

Monitoring Results of Main branch
Nothing displayed CPU: 27%

cpubar

gnome-
system-
monitor

15/9/2012 Analysing heap dumps and optimising performance 11

Monitoring Results of Main branch
Plots & tracks with labels displayed CPU: 64%

CPU Performance Profiling

15/9/2012 Analysing heap dumps and optimising performance 12

15/9/2012 Analysing heap dumps and optimising performance 13

Identification of Hotspot 1
Exclusive & inclusive user

CPU utilisation metrics

15/9/2012 Analysing heap dumps and optimising performance 14

Identification of Hotspot 2

15/9/2012 Analysing heap dumps and optimising performance 15

Details of Hotspot 2

15/9/2012 Analysing heap dumps and optimising performance 16

Details of Hotspot 2 (cont.)

15/9/2012 Analysing heap dumps and optimising performance 17

Details of Hotspot 2 (cont.)

15/9/2012 Analysing heap dumps and optimising performance 18

Identification of Hotspot 2 (cont.)

CPU Performance Tuning

15/9/2012 Analysing heap dumps and optimising performance 19

15/9/2012 Analysing heap dumps and optimising performance 20

Performance before the changes
CPU: 60%

15/9/2012 Analysing heap dumps and optimising performance 21

Performance after the changes
CPU: 50%

15/9/2012 Analysing heap dumps and optimising performance 22

Profiling comparison 1

15/9/2012 Analysing heap dumps and optimising performance 23

Profiling comparison 2

Memory Performance
Profiling/Tuning

Goal is not to improve the CPU usage but
to mitigate the impact of the GC on the
real-time behaviour of the application

15/9/2012 Analysing heap dumps and optimising performance 24

New Generation GCs Old Generation GCs

Copying collector (< Java 5)
-XX:+UseSerialGC

Mark-Sweep collector (< Java 5)
-XX:+UseSerialGC

Parallel copying collector (≥ Java 5)
-XX:+UseParNewGC

Parallel Scavenge MarkSweep collector
-XX:+UseParallelOldGC

Parallel scavenge collector (≥ Java 5,

>10GB heap space)
-XX:+UseParallelGC

Concurrent Mark Sweep collector

(≥ Java 6)
-XX:+UseConcMarkSweepGC

G1 young generation (≥ Java 7)
-XX:+UseG1GC

G1 mixed generation (≥ Java 7)
-XX:+UseG1GC

15/9/2012 Analysing heap dumps and optimising performance 25

Generational Spaces &
Garbage Collectors

Eden S1 S2 Tenured

New Generation

Permanent

Old Generation

� -Xmx = -Xms

� –XX:PermSize = –XX:MaxPermSize

� Use -Xmn instead of –XX:NewSize
and –XX:MaxNewSize

� Disable adaptive sizing of generations
–XX:-UseAdaptiveSizePolicy

if –XX:SurvivorRatio is specified

� Use –XX:+UseConcMarkSweepGC

� 40<–XX:CMSInitiatingOccupancyFraction<70

and always use
–XX:+UseCMSInitiatingOccupancyOnly with it

15/9/2012 Analysing heap dumps and optimising performance 26

Recommended Settings
http://randomlyrr.blogspot.be/2012/03/java-tuning-in-nutshell-part-1.html

run.args.extra =

-Xms256m -Xmx768m -Xincgc

-XX:+UseConcMarkSweepGC

-XX:SurvivorRatio=3

–XX:-UseAdaptiveSizePolicy

-XX:CMSInitiatingOccupancyFraction=60

–XX:+UseCMSInitiatingOccupancyOnly

15/9/2012 Analysing heap dumps and optimising performance 27

Application’s Runtime arguments

Max heap size

Init heap size

Eden=76,8 Mb,
S1,S2= 25,6 Mb

CMS: Concurrent MarkSweep

15/9/2012 Analysing heap dumps and optimising performance 28

HPJMeter

15/9/2012 Analysing heap dumps and optimising performance 29

HPJMeter

15/9/2012 Analysing heap dumps and optimising performance 30

HPJMeter

15/9/2012 Analysing heap dumps and optimising performance 31

HPJMeter

15/9/2012 Analysing heap dumps and optimising performance 32

HPJMeter

Thread Profiling/Tuning
?

15/9/2012 Analysing heap dumps and optimising performance 33

∗ Hunt C. & John B. (2011), Java Performance,
Prentice Hall

∗ Kabutz H. (2011), Java Master’s course slides

∗ http://www.youtube.com/watch?v=VGQAL9aUKfs
∗ http://randomlyrr.blogspot.be/2012/03/java-tuning-

in-nutshell-part-1.html
∗ http://www.fasterj.com/articles/oraclecollectors1.sh

tml
∗ http://www.oracle.com/technetwork/java/javase/te

ch/vmoptions-jsp-140102.html

15/9/2012 Analysing heap dumps and optimising performance 34

References

Questions

15/9/2012 35Analysing heap dumps and optimising performance

?

