Transportation Problem

Promila Kumar

Introduction

The Transportation problem is one of the sub-classes of Linear programming problem in which the objective is to transport various amounts of a single homogeneous commodity, that are initially stored at various origins to different destinations in such a way tha the transportation cost is minimum

Mathematical Formulation

- Let $O_{1}, O_{2}, \ldots O_{n}$ be n origins
- Let $D_{1}, D_{2}, \ldots D_{m}$ be m destinations
- Let $a_{1}, a_{2}, \ldots a_{n} b e$
the amount of comodity available at various origins
- Let $b_{1}, b_{2}, \ldots b_{m}$ be the amount of comodity required at various destination
- Let $t_{i j}$ be the cost of transporting one unit from origin O_{i} to destination D_{j}

Transportation Table

Transportation Algorithm

Obtain the basic feasible solution.
Investigate current solution for optimality
If the current solution is optimal, stop.
2. If not, use optimality conditions of Simplex Method to determine the entering variable from non basic variables.
3. Use feasibility conditions of Simplex Method to determine leaving variable from the set of basic variables and find new basic feasible solution.
4. Go to step 2.

Basic Feasible Solution

- North West Corner Rule
- Least Cost Method
- Vogles Approximation Method

North West Corner Rule

1. Allocate maximum number of units possible in the top left corner of the transportation table.
2. Rewrite demand and availability variables.
3. Eliminate first column if demand is exhausted and first row if requirement is exhausted.
4. Repeat step 1 till all requirements are met.

Least Cost Method

1. Identify the cell with lowest cost.
2. Allocate maximum number of units possible in that cell.
3. Rewrite demand and availability variables.
4. Repeat step 1 till all requirements are met.

1.Obtain Basic Feasible solution for the following problem1

Origins/des tinations	D_{1}	D_{2}	D_{3}	D_{4}	Availability
O_{1}	1	2	3	4	6
O_{2}	4	3	2	o	8
O_{3}	o	2	2	1	10
Requireme nt	4	6	8	6	24

Here $\sum_{i=1}^{m} a_{i j}=\sum_{j=1}^{n} b_{i j}=24$ soit is a balanced transportation problem

Table 1

Origins/des tinations	D_{1}		D		D_{3}				Availability
O_{1}		1		2		3		4	6
O_{2}		4		3		2)	o	8(2)
O_{3}		o		2		2		1	10
Requireme	4		6		8		6(o)		24

Least cost is in cell $\mathrm{O}_{2} \mathrm{D}_{4}$ and in $\mathrm{O}_{3} \mathrm{D}_{1}$, so let us select $\mathrm{O}_{2} \mathrm{D}_{4}$ as it can have more allocation than $\mathrm{O}_{3} \mathrm{D}_{1}$. After allocating 6 units to this cell, demand for D_{4} is fulfilled.Delete this and work on the remaining table.

Table 2

| Origins/des
 tinations |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Now Least cost is in cell $O_{3} D_{1}$, so let us allocate 4 units to this cell. Demand of destination D_{1} is fulfilled. Delete this column and work on the remaining table.

Table 3

Origins/des tinations	D	D	D_{3}	D	Availability
O_{1}	1	(6) 2	3	4	(6) o
O_{2}	4	3	2	6 0	(8)2
O_{3}	o	2	2	1	(10)6
Requireme nt	(4) o	(6) 0	8	6(o)	24

Now Least cost is in cell $\mathrm{O}_{1} \mathrm{D}_{2}$, so let us allocate 6 units to this cell. Demand of destination D_{1} and origin O_{1} is fulfilled. Delete this column as well as row and work on the remaining table.

Table 4

Origins/des tinations	D	D	D_{3}	D	Availability
O_{1}	1	(6) 2	3	4	(6) o
O_{2}	4	3		o	(8)(2) O
O_{3}	o	2	2	1	(10)(6)o
Requireme nt	(4)o	(6) o	(8) o	6(o)	24

Now The only possibility left is shown above. Basic feasible solution is obtained. It has $(4+3-1=6) 5$ basic cells, so the solution is degenerate and the cost is $6.2+2.2+6.0+4.0+2.6$

2.Obtain Basic Feasible solution for the following problem

Origins/des tinations	D_{1}	D_{2}	D_{3}	D_{4}	Availability
O_{1}	21	16	25	13	11
O_{2}	17	18	14	23	13
O_{3}	32	27	18	41	19
Requireme nt	6	10	12	15	43

Here $\sum_{i=1}^{m} a_{i j}=\sum_{j=1}^{n} b_{i j}=43$ so it is a balanced transportation problem

Table 1

Origins/des tinations	D_{1}	D_{2}	D_{3}	D_{4}	Availability
O	21	16	25	13	(11) O
O_{2}	17	18	14	23	13
O_{3}	32	27	18	41	19
Requireme nt	6	10	12	(15) 4	43

Now Least cost is in cell $O_{1} D_{4}$, so let us allocate 11 units to this cell. Stock of Origin O_{1} is exhausted. Delete this row and work on the remaining table.

Table 2

Origins/des tinations	D_{1}	D_{2}	D	D_{4}	Availability
0	21	16	25	13	(11) O
O_{2}	17	18	14	23	(13)1
O_{3}	32	27	18	41	19
Requireme nt	6	10	(12) O	(15)4	43

Now Least cost is in cell $\mathrm{O}_{2} \mathrm{D}_{3}$, so let us allocate 12 units to this cell. Demand of destination D_{3} is fulfilled. Delete this column and work on the remaining table.

Table 3

Origins/des tinations	D_{1}		D_{2}		D_{3}	

Now Least cost is in cell $O_{2} D_{1}$, so let us allocate 12 units to this cell. Stock of Origin O_{2} is exhausted. Delete this row and work on the remaining table.

Table 4

Now Least cost is in cell $\mathrm{O}_{3} \mathrm{D}_{2}$, so let us allocate 10 units to this cell. Demand of Origin D_{2} is fulfilled. Delete this column and work on the remaining table.

Q3. Obtain Basic Feasible solution for the following problem1

Origins/desti nations	D_{1}		D_{2}		D_{3}
Availabilit					
y					

Here $\sum_{i=1}^{m} a_{i j}=\sum_{j=1}^{n} b_{i j}=45$ so it is a balanced transportation problem

Now The only possibility left is shown above. Basic feasible solution is obtained. It has $4+3-1=6$ basic cells, so the solution is non degenerate and the cost is $17.1+14.2+13.11+32.5+27.10+41.4$

Vogel's Approximation Method

- For each row identify lowest and next to lowest cost and find their difference and write it at the extreme right.
- Repeat the same for all the columns and write it at the bottom.
- Select a row or column having the maximum of this difference.
- In the selected row or column identify a cell with the minimum cost.
- Allocate the maximum possible number in that cell.
- Adjust the rim requirements and repeat the process.

Q3. Table 1

Now Least cost is in cell $\mathrm{O}_{3} \mathrm{D}_{3}$, so let us allocate 16 units to this cell. Demand of destination O_{3} is fulfilled. Delete this row and work on the remaining table.

Q3. Table 1

Now Least cost is in cell $\mathrm{O}_{3} \mathrm{D}_{3}$, so let us allocate 16 units to this cell. Demand of destination O_{3} is fulfilled. Delete this row and work on the remaining table.

Q3 Table 2

Now Least cost is in cell $\mathrm{O}_{2} \mathrm{D}_{3}$, so let us allocate 7 units to this cell. Demand at destination D_{3} is fulfilled. Delete this column and repeat the process on the remaining table.

Q3 Table 3

Now Least cost is in cell $\mathrm{O}_{2} \mathrm{D}_{1}$, so let us allocate 5 units to this cell. Stock of Origin O_{2} is exhausted. Delete this row and repeat the process on the remaining table.

Q3 Table 4

Now The only possibility left is shown above. Basic feasible solution is obtained. It has $3+3-1=5$ basic cells, so the solution is non degenerate and the cost is $13.9+15.8+5.742 .7+16.9$

Q4.Obtain Basic Feasible solution for the following problem

Origins/des tinations	D_{1}	D_{2}	D_{3}	D_{4}	Availability
O_{1}	10	10	16	20	300
O_{2}	16	6	17	25	200
O_{3}	8	21	10	15	250
Requireme nt	325	175	100	150	750

Here $\sum_{i=1}^{m} a_{i j}=\sum_{j=1}^{n} b_{i j}=750$ so it is a balanced transportation problem

Q4.Obtain Basic Feasible solution for the following problem

Origins/des tinations	D_{1})	D_{3}	D_{4}	Availabi lity	
O_{1}	10	10	16	20	300	0
O_{2}	16	6	17	25	$(200) 25$	10
O_{3}	8	21	10	15	250	2
Requireme nt	325	(175) o	100	150	750	
	2	4	6	5		

Now Least cost is in cell $\mathrm{O}_{2} \mathrm{D}_{2}$, so let us allocate 175 units to this cell. Demand at destination D_{2} is fulfilled. Delete this column and repeat the process on the remaining table.

Q4.Table 2

Origins/des tinations	D_{1}		D_{3}	D_{4}	Availabi lity	
0	10	10	16	20	(300) o	6
O_{2}	16	6	17	25	(200) 25	1
O_{3}	8	21	10	15	250	2
Requireme nt	(325)25	(175) o	100	150	750	
	2		6	5		

Now Least cost is in cell $\mathrm{O}_{1} \mathrm{D}_{1}$, so let us allocate 300 units to this cell. Stock of Origin O_{1} is exhausted. Delete this row and repeat the process on the remaining table.

Q4. Table 3

Origins/des tinations	D_{1}		D_{3}		Availabil ity	
0	10	10	16	20	(300) 0	
O_{2}	16	6	17	25	(200)25	1
O_{3}	8	21	10	15	(250)100	2
Requireme nt	(325)25	(175) o	100	(150) O	750	
	8		7	10		

Now Least cost is in cell $O_{3} D_{4}$, so let us allocate 150 units to this cell. Demand at destination D_{4} is fulfilled. Delete this column and repeat the process on the remaining table.

Q4. Table 4

Origins/des tinations	D		D_{3}		Availabil ity	
O	10	10	16	20	(300) 0	
O_{2}	16	6	17	25	(200) 25	1
O_{3}	8	21	10	15	$(250)(10$	2
Requireme nt	(325)(25) o	(175) o	100	(150)o	750	
	8		7			

Now Least cost is in cell $\mathrm{O}_{3} \mathrm{D}_{1}$, so let us allocate 25 units to this cell. Demand at destination D_{1} is fulfilled. Delete this column and repeat the process on the remaining table.

Q4. Table 5

Now The only possibility left is shown above. Basic feasible solution is obtained. It has $4+3-1=6$ basic cells, so the solution is non degenerate and the cost is $300.10+175.6+17.25+25.8+10.75+150.15$

Moving Towards Optimality

- Stepping stone method
- Modified Distribution Method or MODI Method

Stepping Stone Method

Determine an initial basic feasible solution.

- Make sure that number of occupied(basic) cells is exactly $\mathrm{m}+\mathrm{n}-1$.
- Evaluate cost effectiveness of shipping one unit of good via transportation routes which are not currently in the solution by following five steps as follows:

Select an unoccupied cell.
Beginning at this cell trace a closed path.
Assign plus(+) and minus(-) sign alternatively on each corner cell of the closed path. The cells at the corner points are called stepping stones.
Compute the net change in the cost along the closed path.
5) If net change corresponding to each unoccupied cell is positive, the current solution is optimal, if not...
6) Select the unoccupied cell having the highest negative net cost change and determine the maximum number of units that can be assigned to this cell.
7) Adjust the value of other cells in the closed path.
8) Go to step 1 and repeat the procedure.

Q5. Initial basic feasible is given and apply stepping stone method to find the optimal solution

Origins/des tinations	D_{1}	D_{2}	D_{3}	D_{4}	Availabili ty
O_{1}	21	16	25	13	11
O_{2}	17	18	14	23	13
O_{3}	32		18	41	19
Requiremen t	6	10	12	15	43

Now the total transportation cost is
$11 \cdot 13+1 \cdot 17+12 \cdot 14+32 \cdot 5+27 \cdot 10+4 \cdot 41=922$
Total number of basic cells is $4+3-1=6$

Table 2. select a non basic cell $\mathrm{O}_{1} \mathrm{D}_{1}$ and make closed path

Origins/des tinations	D_{1}	D_{2}	D_{3}	D_{4}	Availabil ity
O_{1}	21	16	25	13	11
O_{2}	17	18	14	23	13
O_{3}	32	27	18	41	19
Requireme nt	6	10	12	15	43

Now the total cost change will be $21-13+41-32=17$

Table 3: select a non basic cell $\mathrm{O}_{1} \mathrm{D}_{2}$ and make closed path

Now the total cost change will be $16-13+41-27=17$

Table 4. select a non basic cell $\mathrm{O}_{1} \mathrm{D}_{3}$ and make closed path

Origins/des tinations	D_{1}	D_{2}	D_{3}	D_{4}	Availabil ity
O_{1}	21	16	25	13	11
O_{2}	17	18	14	23	13
O_{3}	32	27	18	41	19
Requiremen	6	10	12	15	43

Now the total cost change will be $25-13+41-32+17-14=24$

Table 5: select a non basic cell $\mathrm{O}_{2} \mathrm{D}_{2}$ and make closed path

Origins/des tinations	D_{1}	D_{2}	D_{3}	D_{4}	Availabil ity
O_{1}	21	16	25	13	11
O_{2}	17	18	14	23	13
O_{3}	32	27	18	41	19
Requiremen t	6	10	12	15	43

Now the total cost change will be 18-27+32-17=6

Table 6. select a non basic cell $\mathrm{O}_{2} \mathrm{D}_{4}$ and make closed path

Now the total cost change will be $23-41+32-17=-3$

Table 7. select a non basic cell $\mathrm{O}_{3} \mathrm{D}_{3}$ and make closed path

Origins/des tinations	D_{1}	D_{2}	D_{3}	D_{4}	Availabil ity
O_{1}	21	16	25	13	11
O_{2}	17	18	14	23	13
O_{3}	32	27	18	41	19
Requireme nt	6	10	12	15	43

Now the total cost change will be 18-14+17-32=-11 which is most negative, so this cell will become occupied or basic cell. Maximum allocation that can be made in this cell is 5 . Hence now $O_{3} D_{1}$ will become non basic cell. The new basic solution will look like:

Instead of making all these tables we can make 1 table as follows

Unoccup ied Cell	Closed Path				Net cost change
$\mathrm{O}_{1} \mathrm{D}_{1} \longrightarrow$	$\mathrm{O}_{1} \mathrm{D}_{4} \longrightarrow$	$\mathrm{O}_{3} \mathrm{D}_{4} \longrightarrow$	$\mathrm{O}_{3} \mathrm{D}_{1}$		$21-13+41-32=17$
$\mathrm{O}_{1} \mathrm{D}_{2}$	$\mathrm{O}_{1} \mathrm{D}_{4} \longrightarrow$	$\mathrm{O}_{3} \mathrm{D}_{4} \longrightarrow$	$\mathrm{O}_{3} \mathrm{D}_{2}$		$16-13+41-27=17$
$\mathrm{O}_{1} \mathrm{D}_{3} \longrightarrow$	$\mathrm{O}_{1} \mathrm{D}_{4} \longrightarrow$	$\mathrm{O}_{3} \mathrm{D}_{4}$	$\stackrel{\mathrm{O}_{3} \mathrm{D}}{\longrightarrow} \mid \xrightarrow{\mathrm{O}_{2} \mathrm{D}_{1}}$	$\mathrm{O}_{2} \mathrm{D}_{3}$	$25-13+41-32+17-14=24$
$\mathrm{O}_{2} \mathrm{D}_{2} \longrightarrow$	$\mathrm{O}_{3} \mathrm{D}_{2} \longrightarrow$	$\mathrm{O}_{3} \mathrm{D}_{1}$	$\mathrm{O}_{2} \mathrm{D}_{1}$		$18-27+32-17=6$
$\mathrm{O}_{2} \mathrm{D}_{4}$	$\mathrm{O}_{3} \mathrm{D}_{4} \longrightarrow$	$\mathrm{O}_{3} \mathrm{D}_{1} \longrightarrow$	$\mathrm{O}_{2} \mathrm{D}_{1}$		$23-41+32-17=-3$
$\mathrm{O}_{3} \mathrm{D}_{3} \longrightarrow$	$\mathrm{O}_{3} \mathrm{D}_{1} \longrightarrow$	$\mathrm{O}_{2} \mathrm{D}_{1} \longrightarrow$	$\mathrm{O}_{2} \mathrm{D}_{3}$		$18-32+17-14=-11$

The most negative net cost change is -11 corresponding to $\mathrm{O}_{3} \mathrm{D}_{3}$. So this cell will now become a basic cell.

Table 8. New improved basic feasible solution

Origins/des tinations	D_{1}	D_{2}	D_{3}	D_{4}	Availabil ity
O_{1}	21	16	25	13	11
O_{2}	17	18	14	23	13
O_{3}	32	27	18	41	19
Requireme nt	6	10	12	15	43

Now the transportation cost will be
$17.6+14.7+13.11+27.10+18.5+41.4=867$ which is definitely better.
We repeat the whole process

Stepping Stone Method (table 8)

Unoccup ied Cell	Closed Path					Net cost change
$\mathrm{O}_{1} \mathrm{D}_{1} \longrightarrow$	$\mathrm{O}_{1} \mathrm{D}_{4} \longrightarrow$	$\mathrm{O}_{4} \mathrm{D}_{3} \longrightarrow$	$\xrightarrow{\mathrm{O}_{3} \mathrm{D}_{3}}$	$\xrightarrow{\mathrm{O}_{2} \mathrm{D}_{3}}$	$\mathrm{O}_{2} \mathrm{D}_{1}$	$21-13+41-18+14-17=21$
$\mathrm{O}_{1} \mathrm{D}_{2} \longrightarrow$	$\mathrm{O}_{1} \mathrm{D}_{4} \longrightarrow$	$\mathrm{O}_{3} \mathrm{D}_{4} \longrightarrow$	$\mathrm{O}_{3} \mathrm{D}_{2}$			$16-13+41-27=17$
$\mathrm{O}_{1} \mathrm{D}_{3} \longrightarrow$	$\mathrm{O}_{1} \mathrm{D}_{4} \longrightarrow$	$\mathrm{O}_{3} \mathrm{D}_{4} \longrightarrow$	$\mathrm{O}_{3} \mathrm{D}_{3}$			$25-13+41-18=35$
$\mathrm{O}_{2} \mathrm{D}_{2} \longrightarrow$	$\mathrm{O}_{2} \mathrm{D}_{3} \longrightarrow$	$\mathrm{O}_{3} \mathrm{D}_{3} \longrightarrow$	$\mathrm{O}_{3} \mathrm{D}_{2}$			$18-14+18-27=-5$
$\mathrm{O}_{2} \mathrm{D}_{4}$	$\mathrm{O}_{2} \mathrm{D}_{3} \longrightarrow$	$\mathrm{O}_{3} \mathrm{D}_{3} \longrightarrow$	$\mathrm{O}_{3} \mathrm{D}_{4}$			$23-14+18-41=-14$
$\mathrm{O}_{3} \mathrm{D}_{1}$	$\mathrm{O}_{3} \mathrm{D}_{3} \longrightarrow$	$\mathrm{O}_{2} \mathrm{D}_{3} \longrightarrow$	$\mathrm{O}_{2} \mathrm{D}_{1}$			$32-18+14-17=11$

The most negative net cost change is -14 corresponding to $\mathrm{O}_{2} \mathrm{D}_{4}$. So this cell will now become a basic cell.

Table 9. New improved basic feasible solution

Origins/des tinations	D_{1}	D_{2}	D_{3}	D_{4}	Availabil ity
O_{1}	21	16	25	13	11
O_{2}	17	18	14	23	13
O_{3}	32	27	18	41	19
Requireme nt	6	10	12	15	43

Now the transportation cost will be
$17.6+14.3+13.11+27.10+18.9+23.4=811$ which is definitely better.
We repeat the whole process

Stepping Stone Method (table 9)

Unoccup ied Cell	Closed Path				Net cost change
$\mathrm{O}_{1} \mathrm{D}_{1} \longrightarrow$	$\mathrm{O}_{1} \mathrm{D}_{4} \longrightarrow$	$\mathrm{O}_{2} \mathrm{D}_{4} \longrightarrow$	$\mathrm{O}_{2} \mathrm{D}_{1}$		$21-13+23-17=14$
$\mathrm{O}_{1} \mathrm{D}_{2} \longrightarrow$	$\mathrm{O}_{1} \mathrm{D}_{4} \longrightarrow$	$\mathrm{O}_{2} \mathrm{D}_{4}$	$\xrightarrow{\mathrm{O}_{2} \mathrm{D}_{3}} \xrightarrow{\mathrm{O}_{3} \mathrm{D}_{3}}$	$\mathrm{O}_{3} \mathrm{D}_{2}$	$16-13+23-14+18-27=3$
$\mathrm{O}_{1} \mathrm{D}_{3} \longrightarrow$	$\mathrm{O}_{1} \mathrm{D}_{4} \longrightarrow$	$\mathrm{O}_{2} \mathrm{D}_{4} \longrightarrow$	$\mathrm{O}_{2} \mathrm{D}_{3}$		$25-13+23-14=21$
$\mathrm{O}_{2} \mathrm{D}_{2} \longrightarrow$	$\mathrm{O}_{2} \mathrm{D}_{3} \longrightarrow$	$\mathrm{O}_{3} \mathrm{D}_{3} \longrightarrow$	$\mathrm{O}_{3} \mathrm{D}_{2}$		$18-14+18-27=-5$
$\mathrm{O}_{3} \mathrm{D}_{4}$	$\mathrm{O}_{2} \mathrm{D}_{4} \longrightarrow$	$\mathrm{O}_{2} \mathrm{D}_{3} \longrightarrow$	$\mathrm{O}_{2} \mathrm{D}_{1}$		$41-23+14-18=14$
$\mathrm{O}_{3} \mathrm{D}_{1}$	$\mathrm{O}_{3} \mathrm{D}_{3} \longrightarrow$	$\mathrm{O}_{2} \mathrm{D}_{3} \longrightarrow$	$\mathrm{O}_{2} \mathrm{D}_{1}$		$32-18+14-17=11$

The most negative net cost change is -5 corresponding to $\mathrm{O}_{2} \mathrm{D}_{2}$. So this cell will now become a basic cell.

Table 10: New improved basic feasible solution

Origins/des tinations	D_{1}	D_{2}	D_{3}	D_{4}	Availabil ity
O_{1}	21	16	25	13	11
O_{2}	17	18	14	23	13
O_{3}	32	27	18	41	19
Requireme nt	6	10	12	15	43

Now the transportation cost will be
$17.6+18.3+13.11+27.7+18.12+23.4=796$ which is definitely better.
We repeat the whole process

Stepping Stone Method (table 10)

Unoccup ied Cell	Closed Path			Net cost change
$\mathrm{O}_{1} \mathrm{D}_{1} \longrightarrow$	$\mathrm{O}_{1} \mathrm{D}_{4} \longrightarrow$	$\mathrm{O}_{2} \mathrm{D}_{4} \longrightarrow$	$\mathrm{O}_{2} \mathrm{D}_{1}$	$21-13+23-17=14$
$\mathrm{O}_{1} \mathrm{D}_{2} \longrightarrow$	$\mathrm{O}_{1} \mathrm{D}_{4} \longrightarrow$	$\mathrm{O}_{2} \mathrm{D}_{4} \longrightarrow$	$\mathrm{O}_{2} \mathrm{D}_{2}$	$16-13+23-18=8$
$\mathrm{O}_{1} \mathrm{D}_{3} \longrightarrow$	$\mathrm{O}_{1} \mathrm{D}_{4} \longrightarrow$	$\mathrm{O}_{2} \mathrm{D}_{4} \longrightarrow$	$\xrightarrow{\mathrm{O}_{2} \mathrm{D}_{3}} \rightarrow$	$25-13+23-14=26$
$\mathrm{O}_{2} \mathrm{D}_{3} \longrightarrow$	$\mathrm{O}_{2} \mathrm{D}_{3} \longrightarrow$	$\mathrm{O}_{3} \mathrm{D}_{3} \rightarrow$	$\mathrm{O}_{3} \mathrm{D}_{2}$	18-14+18-27=5
$\mathrm{O}_{3} \mathrm{D}_{4} \longrightarrow$	$\mathrm{O}_{2} \mathrm{D}_{4} \longrightarrow$	$\mathrm{O}_{2} \mathrm{D}_{3} \rightarrow$	$\mathrm{O}_{2} \mathrm{D}_{1}$	$41-23+14-18=9$
$\mathrm{O}_{3} \mathrm{D}_{1} \longrightarrow$	$\mathrm{O}_{3} \mathrm{D}_{3} \longrightarrow$	$\mathrm{O}_{2} \mathrm{D}_{3} \rightarrow$	$\mathrm{O}_{2} \mathrm{D}_{1}$	$32-18+14-17=6$

The (net change) opportunity cost corresponding to each unoccupied cell is positive the current table gives the optimal solution.

Moving Towards Optimality

Detemine an initial basic feasible solution consisting of $m+n-1$ basic variables.

- Determine set of numbers $u_{i}(i=1,2 \ldots ., m)$ for each row and $v_{j}(j=1,2, \ldots, n)$ for each column so that $C_{i, j}$ $=u_{i}+v_{j}$ for basic(occupied) cells.
- The process can be initiated by assigning value ' o ' to any one of these u_{i} or v_{j}.

For all non-basic cells compute $u_{i}+v_{j}-c_{i, j}$
Enter them on one corner of the corresponding cell. If all $u_{i}+v_{j}-c_{i, j} \leq o$ then the current solution is optimal.

- If at least one $u_{i}+v_{j}-c_{i, j}>o$ select the one with the largest value to become new basic variable.
- Make a loop starting from the selected cell and assign values $+\theta$ and $-\theta$ alternatively.
- Assign maximum value to θ so that one basic variable becomes zero and others remain positive.
- Repeat the process till all $u_{i}+v_{j}-c_{i, j} \leq o$.

Q6. Find the optimal solution for the given problem:

Origins/des tinations	D_{1}	D_{2}	D_{3}	D_{4}	Availabil ity	
O_{1}	5	3	6	2	19	$\mathrm{u}_{1}=0$
O_{2}	4	7	9	1	37	$\mathrm{u}_{2}=3$
O_{3}	3	4	7	5	34	$u_{3}=1$
Requireme nt	16	18	31	25	90	
	$\mathrm{v}_{1}=2$	$\mathrm{v}_{2}=3$	$v_{3}=6$	$\mathrm{v}_{4}=-2$		

The transportation cost will be $18.3+6.1+12.9+25.1+16.3+18.7=367$
We proceed towards optimality.

Calculating net evaluations

Origins/des tinations	D_{1}	D_{2}	D_{3}	D_{4}	Availabil ity	
O_{1}					19	$\mathrm{u}_{1}=0$
O_{2}	4	7	9	1	37	$\mathrm{u}_{2}=3$
O_{3}	3	4	7	5	34	$u_{3}=1$
Requireme	16	18	31	25	90	
	$\mathrm{V}_{1}=2$	$\mathrm{v}_{2}=3$	$v_{3}=6$	$\mathrm{v}_{4}=-2$		

For non basic cells calculate $u_{i}+v_{j}-c_{i j}$, $\mathrm{O}_{2} \mathrm{D}_{1}$ being largest positive cell will be new basic cell.

Next better solution

Origins/des tinations	D_{1}	D_{2}	D_{3}	D_{4}	Availabil ity	
O_{1}	5				19	$\mathrm{u}_{1}=0$
O_{2}		7	9	1	37	$\mathrm{u}_{2}=3$
O_{3}	3	4	7	5	34	$u_{3}=1$
Requireme	16	18	31	25	90	
	$\mathrm{v}_{1}=2$	$\mathrm{v}_{2}=3$	$v_{3}=6$	$\mathrm{v}_{4}=-2$		

Assign value θ to cell $\mathrm{O}_{2} \mathrm{D}_{1}$ and make a loop using basic cells. Choose θ in such a way that one cell becomes non $\operatorname{basic}(\theta=12)$

Next better solution

Origins/des tinations	D_{1}	D_{2}	D_{3}	D_{4}	Availabil ity	
O_{1}	5			2	19	$\mathrm{u}_{1}=0$
O_{2}	4	7	9	1	37	$\mathrm{u}_{2}=2$
O_{3}	3	4	7	5	34	$\mathrm{u}_{3}=1$
Requireme nt	16	18	31	25	90	
	$\mathrm{v}_{1}=2$	$\mathrm{v}_{2}=3$	$v_{3}=6$	$\mathrm{v}_{4}=-1$		

For all non basic cells calculate $u_{i}+v_{j}-c_{i j} \leq 0$, so the current solution is optimal and optimal value is $18.3+6.1+12.4+25.1+4.3+30.7=355$

