Chapter-23

Coordination Chemistry (Geometrical Isomerism)

Arijit Das
Department of Chemistry, Bir Bikram Memorial College, Agartala, Tripura, India
Email: arijitdas78chem@gmail.com

Isomerism in co-ordination compounds (iso-equal, meros - parts):
Two or more compounds having same molecular formula (same molecular weight) but different structural formula and property are known as isomers and the phenomenon is called isomerism.

Stereoisomerism

1. Geometrical isomerism: In metal complex the ligand may occupy different types of positions around the central metal atom which are either adjacent to each other (cis isomer) or opposite to one another (trans isomer). So geometrical isomerism is also known as 'cis-trans' isomerism.

Geometrical isomerism is very much common in coordination compounds for coordination number 4 and 6.

1. Geometrical isomerism in 4-coordination compounds:
A) Tetrahedral complexes: They do not show geometrical isomerism due to all four ligands are equidistant to one another.
B) Square planar complexes: Complexes with general formula $\mathbf{M a}_{4}, \mathbf{M a}_{3} \mathbf{b}$, Mba ${ }_{3}$ do not show cis-trans isomerism due to equivalent spatial arrangement. Cis and trans positions in square planar geometry is given below:

In the general formula below (a,b) represents monodentate ligands, (aa) represent symmetrical bidentate ligand and (ab) represent unsymmetrical bidentate ligand.

Following type of square planar complexes show cis-trans isomerism.
a) $\left[\mathrm{Ma}_{2} \mathrm{~b}_{2}\right]^{\mathrm{n} \pm}$ type:

(cis-trans isomer w.r.t. ' \mathbf{a} ' and ' b ')
(Here $M=$ metal ion, $a, b=$ monodentate ligand)

e.g. $\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{2} \mathrm{Cl}_{2}\right],\left[\mathrm{Pd}\left(\mathrm{NH}_{3}\right)_{2}\left(\mathrm{NO}_{2}\right)_{2}\right],\left[\mathrm{Ni}\left(\mathrm{NH}_{3}\right)_{2} \mathrm{Cl}_{2}\right]$

b) $\left[M a_{2} b c\right]^{\mathrm{n} \pm}$ type:

Here $M=$ metal ion; $a=$ neutral ligand $\left(\mathrm{NH}_{3}, \mathrm{Py}, \mathrm{H}_{2} \mathrm{O}\right) ; b, c=$ anionic ligand $\left(\mathrm{Cl}^{-}, \mathrm{Br}^{-}, \mathrm{NO}_{2}^{-}\right.$, SCN ${ }^{-}$)
(cis-trans isomer w.r.t. 'a')

e.g. $\left[\mathrm{Pt}(\mathrm{Py})_{2}\left(\mathrm{NO}_{2}\right) \mathrm{Cl}\right],\left[\mathrm{PtCl}\left(\mathrm{NH}_{3}\right)_{2} \mathrm{Br}\right]$ etc.

c) $[\mathbf{M a b c d}]^{\mathbf{n} \pm}$ type: Exist in three isomeric trans form.

(ii)

The structure of these isomers can be written by fixing the position of one ligand (a) at one corner and placing the other ligands $b, \boldsymbol{c}, \boldsymbol{d}$ trans to it.
e.g. $\left[\mathrm{Pt}\left(\mathrm{NO}_{2}\right)(\mathrm{Py})\left(\mathrm{NH}_{2} \mathrm{OH}\right) \mathrm{NH}_{3}\right]^{+}, \quad\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)(\mathrm{Py})(\mathrm{Cl})(\mathrm{Br})\right]$ etc.
d) $\left[\mathbf{M}(\boldsymbol{a b})_{2}\right]^{\boldsymbol{n} \pm}$: The square planar complexes having unsymmetrical bidentate ligand also show cis-trans isomerism as -
 and

Here $\mathrm{M}=$ central metal ion; $(\mathrm{ab})=$ unsymmetrical bidentate ligand such as glycinato $\left(\mathrm{gly}^{-1}\right)$ etc.
e.g. cis-trans isomer of $\left[\mathrm{Pt}(\mathrm{gly})_{2}\right]$ is given below:

(cis-trans isomer w.r.t. donor atom ' N ' and ' O ')
e) $\left[\mathbf{M}(\boldsymbol{a a})_{2}\right]^{\mathrm{n} \pm}$ type: Square planar complex having symmetrical bidentate chelating ligand also shows cis-trans isomerism.
e.g. cis-trans isomer of $\left[\mathrm{Pt}\left(\mathrm{NH}_{2} \mathrm{CHCH}_{3} . \mathrm{CHCH}_{3} \mathrm{NH}_{2}\right)_{2}\right]^{2+}$ is shown below.

(cis-trans isomer w.r.t. peripheral - CH_{3} group)
f) $\left[M_{2} a_{2} X_{4}\right]$ type: Bridged binuclear square planar complexes also show cis-trans isomerism as follows -

(i)

trans-form
(ii)

unsymmetrical form
(iii)
(cis-trans isomer w.r.t. peripheral - Cl and PEt_{3} group)

This molecule also show unsymmetrical isomers which are shown above (iii).

2. Geometrical isomerism in 6-coordination compounds (octahedral compounds):

 Complexes with general formula $\mathbf{M a}_{6}, \mathbf{M a}_{5} \mathbf{b}, \mathbf{M b a}_{5}$ do not show cis-trans isomerism.Note: We know that a regular octahedron has eight faces and six equivalent vertices. In this complex, metal ion is placed at the centre and ligands are placed at the vertices. The position of cis and trans are
$1-2=1-5=2-5=2-3=3-4=3-6=4-6=4-5=$ cis

Following type octahedral compounds show cis-trans isomerism.
a) $\left[\mathbf{M} \boldsymbol{a}_{\mathbf{4}} \mathbf{b}_{\mathbf{2}}\right]^{\mathbf{n \pm}}$ type: In cis isomer two ' b ' are adjacent in position while in trans two 'b' are opposite to each other.

(cis-trans isomer w.r.t. 'b')
e.g. $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{Cl}_{2}\right]^{+}$and $\left[\mathrm{Fe}(\mathrm{CN})_{4}\left(\mathrm{NH}_{3}\right)_{2}\right]^{-1}$
b) $\left[M a_{2} b_{4}\right]$ type:

(cis-trans isomer w.r.t. 'a')
e.g. $\left[\mathrm{Co}\left(\mathrm{NO}_{2}\right)_{2}\left(\mathrm{NH}_{3}\right)_{4}\right]$.
c) $\left[\mathrm{Ma}_{3} \mathbf{b}_{3}\right]^{\mathrm{n} \pm}$ type:

(same ligands placed in two opposite triangular faces)

(triangular faces disturbed by exchange of one ligand)
e.g. $\left[\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{3} \mathrm{Cl}_{3}\right]$ is found in two forms to one isomer, the three Cl^{-}ions are on triangular face and the three NH_{3} molecules are on the opposite triangular face of the regular tetrahedron. So it is known as facial isomer (cis isomer). While in other isomer the Cl^{-}ions are arranged around on the edge of octahedron and NH_{3} on opposite edges. So it is known as peripheral isomer (trans isomer). It can also be named as Fac - Mer Isomerism, where 'Fac' denotes cis form and 'Mer' denotes trans form as shown below:

(Fac or cis form)

(Mer or trans form)

In the 'Fac Isomer' $($ Fac $=$ Face $)$, the 3 similar ligands are arranged at the 3 corners of a face of the octahedral and in the 'Mer Isomer', the $\mathbf{3}$ similar ligands are arranged in an arc around the middle of the octahedron (Mer $=$ Meridian).
d) $\left[\boldsymbol{M}(\boldsymbol{A} \boldsymbol{A})_{2} \boldsymbol{a}_{\mathbf{2}}\right]^{\mathbf{n} \pm}$ type: Octahedral complexes having monodentate (a) and symmetrical bidentate ligands $(A A)$ also show cis-trans isomerism.

(a's cis)

(a's
e.g. $\left[\mathrm{Co}(\mathrm{en})_{2} \mathrm{Cl}_{2}\right]^{+},\left[\mathrm{Co}(\mathrm{en})_{2}\left(\mathrm{NO}_{3}\right)_{2}\right]^{+},\left[\mathrm{Co}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{2} \mathrm{Cl}_{2}\right]^{-}$etc.
e) $\left[\boldsymbol{M}(\boldsymbol{A A})_{2} \boldsymbol{a b}\right]^{\mathrm{n} \pm}$ type: The complexes having bidentate ligand $(A A)$ and two different monodentate ligands (a, b) show cis-trans isomerism as follows

(cis-form)

(trans -form)
(cis-trans isomer w.r.t. symmetrical bidentate ligand 'AA')
e.g. $\left[\mathrm{Co}(\mathrm{en})_{2}\left(\mathrm{NH}_{3}\right)(\mathrm{Cl})\right]^{\mathbf{2 +}},\left[\mathrm{Ru}(\mathrm{Py})\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{2}(\mathrm{NO})\right]$ etc.
f) $\left[M(A A) a_{2} b_{2}\right]^{\mathrm{n} \pm}$ type:

(cis-trans isomer w.r.t. monodentate ligand 'a')
e.g. $\left[\mathrm{Co}(\mathrm{en})\left(\mathrm{NH}_{3}\right)_{2}\left(\mathrm{Cl}_{2}\right)\right]^{+}$having following cis-trans form.

g) $\left[\boldsymbol{M}(A B)_{3}\right]^{\mathbf{n} \pm}$ type: Octahedral complexes having unsymmetrical bidentate chelating agent ' $A B$ ', (A and B show two different co-ordinating atoms of the ligand) show cis-trans isomerism.

(cisisomer)

(trans-isomer)
e.g. $\left[\mathrm{Cr}(\mathrm{gly})_{3}\right] \rightarrow$ triglycinatochromium (III) have following cis and trans isomer.

(cis-

(trans-isomer)
(cis-trans isomer w.r.t. donor atom)
h) $\left[\mathbf{M}_{2} \mathbf{a}_{4} \mathbf{b}_{6}\right]^{\mathbf{n t}}$ type: In case of polynuclear complex, e.g., $\left[\mathrm{Fe}_{2}(\mathrm{OH})_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$, the geometrical isomers are given below.

(cis w.r.t. left hand side OH and right hand side $\mathrm{H}_{2} \mathrm{O}$; trans w.r.t. diagonally opposite OH and $\mathrm{H}_{2} \mathrm{O}$)
In the above example the two OH groups act as bridges and correct respective octahedral components of the overall structure. This isomerism is also known as bridge isomerism.

Related Questions

Q.1. The one that is not expected to show geometrical isomerism is
a) $\left[\mathrm{Ni}\left(\mathrm{NH}_{3}\right)_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]^{2+}$
b) $\left[\mathrm{Ni}(\mathrm{en})_{3}\right]^{2+}$
c) $\left[\mathrm{Ni}\left(\mathrm{NH}_{3}\right)_{2} \mathrm{Cl}_{2}\right]$
d) $\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{2} \mathrm{Cl}_{2}\right]$

Ans. (c) $\left[\mathrm{Ni}\left(\mathrm{NH}_{3}\right)_{2} \mathrm{Cl}_{2}\right]$, doesn't exhibit geometrical isomerism because it has tetrahedral geometry.
Q.2. The complex that can show fac- and mer-isomers is:
a) $\left[\operatorname{Pt}\left(\mathrm{NH}_{3}\right)_{2} \mathrm{Cl}_{2}\right]$
b) $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{3}\left(\mathrm{NO}_{2}\right)_{3}\right]$
c) $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{Cl}_{2}\right]^{+}$
d) $\left[\mathrm{CoCl}_{2}(\mathrm{en})_{2}\right]$

Ans. (b)
Octahedral coordination entities of the type $\left[M a_{3} b_{3}\right]$ shows geometrical isomers: fac and mer isomers. Among the given complexes, the complex with general formula $\left[M a_{3} b_{3}\right.$] is $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{3}\left(\mathrm{NO}_{2}\right)_{3}\right]$.
Q.3. Among (A) - (D), the complexes that can display geometrical isomerism are
(A) $\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{3} \mathrm{Cl}\right]^{+}$
(B) $\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right) \mathrm{Cl}_{5}\right)^{-}$
(C) $\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{2} \mathrm{Cl}\left(\mathrm{NO}_{2}\right)\right]$
(D) $\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{ClBr}\right]^{2+}$
a) (D) and (A)
b) (C) and (D)
c) (A) and (B)
d) (B) and (C)

Ans. (b)
(A) $\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{3} \mathrm{Cl}\right]^{+}$: No geometrical isomerism
(B) $\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right) \mathrm{Cl}_{5}\right]^{-}$: No geometrical isomerism
(C) $\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{2} \mathrm{Cl}\left(\mathrm{NO}_{2}\right)\right]$: has 2 geometrical isomers
(D) $\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{ClBr}\right]^{2+}$: exhibit geometrical isomerism.

All $\mathrm{Pt}^{\mathbf{2 +}}$ complexes with coordination number equals to $\mathbf{4}$ are square planar.
(C) The two NH_{3} ligands could arrange in cis or trans positions.

There are two geometrical isomers.

(D) $\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{ClBr}\right]$: Two geometrical isomers Coordination number $=6$, Octahedral geometry.

02 geometrical isomers cis or trans w.r.t. -Cl and Br because they are minimum in number.

trans

Cis
Q.4. The species that can have a trans-isomer is ($\mathrm{en}=\mathrm{ethane}-\mathbf{1 , 2}$-diamine, $\mathrm{ox}=\mathrm{oxalate}$)
a) $\left[\mathrm{Pt}(\mathrm{en}) \mathrm{Cl}_{2}\right]$
b) $\left[\mathrm{Cr}(\mathrm{en})_{2}(\mathrm{ox})\right]^{+}$
c) $\left[\mathrm{Pt}(\mathrm{en})_{2} \mathrm{Cl}_{2}\right]^{2+}$
d) $\left[\mathrm{Zn}(\mathrm{en}) \mathrm{Cl}_{2}\right]$

Ans. (c)
$\left[\operatorname{Pt}(\mathrm{en})_{2}\left(\mathrm{Cl}_{2}\right)\right]^{2+}$ with formula $\left[M(\mathrm{aa})_{2} \mathrm{~b}_{2}\right]$ can show geometrical isomerism as follows:

(I)

(opfically inactive)
(II)

Q.5. The number of geometric isomers that can exist for square planar $\mathrm{Pt}(\mathrm{Cl})(\mathrm{py})\left(\mathrm{NH}_{3}\right)\left(\mathrm{NH}_{2} \mathrm{OH}\right)^{+}$is $(\mathrm{py}=$ pyridine $)$

a) 2
b) 3
c) 4
d) 6

Ans. b), it belongs to [Mabcd] ${ }^{\text {nt }}$ type
Q.6. Which one of the following complex ions has geometrical isomers?
a) $\left[\mathrm{Co}(\mathrm{en})_{3}\right]^{3+}$
b) $\left[\mathrm{Ni}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{Br}\right]^{+}$
c) $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{2}(\mathrm{en})_{2}\right]^{3+}$
d) $\left[\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{4}(\mathrm{en})\right]^{3+}$

Ans. c), it belongs to $\left[\mathrm{M}(\mathrm{AA})_{2} \mathrm{a}_{2}\right]^{\mathrm{nt}}$ type.

Reference Books:

1. Introduction to Coordination Chemistry, Geoffrey A. Lawrance
2. Coordination chemistry, Joan Ribas Gispert
3. Coordination Chemistry, 20: Invited Lectures Presented at the 20th International Conference on Coordination Chemistry, Calcutta, India, 10-14 December 1979, D. Banerjea
4. Comprehensive Coordination Chemistry III, Gerard Parkin, Edwin C Constable, Lawrence Que
5.https://chem.libretexts.org/Bookshelves/Inorganic_Chemistry/Supplemental_Modules_and_We bsites_(Inorganic_Chemistry)/Coordination_Chemistry/Complex_Ion_Equilibria/Stability_of_M etal_Complexes_and_Chelation
