Projectile Motion Notes

When objects move in two dimensions they often move at an <u>angle</u>

Example: For a triangle with a 90° angle, two 45° angles, and each of the legs measuring 1 meter, what is the length of the hypotenuse?

(1 meter)
$$*$$
 sin or cos(45°)

Answer: $\sqrt{2}$

In order to understand projectile motion you need to understand motion in the X direction (left and right) and the Y direction (up and down).

Then there are the equations. Don't let them overwhelm you, which equation you use depends on the information you are given.

Vertical Y-direction	Horizontal X-direction
$a_y = 9.8 \ m/_{S^2}$	$V_{xi} = V_{xf}$
$a_y = \frac{V_{yf} - V_{yi}}{t}$	d_x = v_x †
$d_y = v_{iy}t + \frac{1}{2}at^2$	
$V_{yf}^2 = V_{yi}^2 + 2a_y d_y$	
$V_y = V_{y0} + a_y t$	

When solving a projectile motion problem you should draw a picture, include angles, distances, velocities, and any other information possible.

Example: Find the max height and range a cannonball reaches if shot at an angle of 35° with an initial velocity of 120 m/s.

Step 1: Sketch with information:

Y Direction	X Direction
Viy =	Vix =
Vf× =	ax =
ay =	dx =
dy =	† =
† =	

Step 2: Circle what you are trying to solve for.

Step 3: Fill in what you already know or can easily find.

In Y Direction: $V_{iy} = 120 \sin 35 = 68.83 \text{ m/s Vfy=0}$ $a_v = -9.81 \text{ m/S2}$ In X Direction: $V_{ix} = 120 \ cos \ 35 = 98.3 \ m/s \ \text{ax} = 0$

Step 3: Use formulas to solve for unknown. Cancel out units!!!

Part I:

$$Vf^{2} = V_{i}^{2} + 2 (a_{y}) (d_{y})$$

 $0 = 4737.5 - 19.62 (d_{y})$
 $d_{y} = 241.5 \text{ m}$
 $a_{y} = \frac{V_{fy} - V_{iy}}{t}$
 $-9.81 = \frac{0 - 68.83}{t}$
 $t = 7.01 \text{ s}$

Part II (Use t = 7.01 found from Part I)

 $d_x = (V_{ix})(t)$ $d_x = (98.3) (7.01)$ $d_x = 689.4 \text{ m}$