When objects move in two dimensions they often move at an \qquad
Example: For a triangle with a 90° angle, two 45° angles, and each of the legs measuring 1 meter, what is the length of the hypotenuse?
$(1$ meter $) * \sin$ or $\cos \left(45^{\circ}\right)$
Answer: $\sqrt{2}$

In order to understand projectile motion you need to understand motion in the X direction (left and right) and the Y direction (up and down).

1) Free fall from rest
$V_{\text {iy }}=0$
$a_{y}=+9.8 \mathrm{~m} / \mathrm{s}^{2}$
$a_{y}=-9.8 \mathrm{~m} / \mathrm{s}^{2}$
$\mathrm{a}_{\mathrm{i}}=+9.8 \mathrm{~m} / \mathrm{s}^{2}$
$\mathrm{~V}_{\text {iy }}>0$ Launching an object straight up
2) Hobject straight down
$\mathrm{Vix}=0$

Then there are the equations. Don't let them overwhelm you, which equation you use depends on the information you are given.

Vertical Y-direction

$$
\begin{gathered}
a_{y}=9.8 \mathrm{~m} / \mathrm{s}^{2} \\
a_{y}=\frac{V_{y f}-V_{y i}}{t} \\
d_{y}=v_{i y} t+\frac{1}{2} a t^{2} \\
V_{y f}^{2}=V_{y i}^{2}+2 a_{y} d_{y} \\
V_{y}=V_{y 0}+a_{y} t
\end{gathered}
$$

Horizontal X-direction

$$
\begin{aligned}
V_{x i} & =V_{x f} \\
d_{x} & =v_{x} \dagger
\end{aligned}
$$

When solving a projectile motion problem you should draw a picture, include angles, distances, velocities, and any other information possible.

Example: Find the max height and range a cannonball reaches if shot at an angle of 35° with an initial velocity of $120 \mathrm{~m} / \mathrm{s}$.

Step 1: Sketch with information:

Y Direction	X Direction
Viy $=$	Vix $=$
Vfx $=$	$a x=$
$a y=$	$d x=$
$d y=$	$t=$
$t=$	

Step 2: Circle what you are trying to solve for.
Step 3: Fill in what you already know or can easily find.
In Y Direction:
$\mathrm{V}_{\text {iy }}=120 \sin 35=68.83 \mathrm{~m} / \mathrm{s}$ Vfy $=0$
$\mathrm{a}_{\mathrm{y}}=-9.81 \mathrm{~m} / \mathrm{S} 2$

In X Direction:
$\mathrm{V}_{\mathrm{ix}}=120 \cos 35=98.3 \mathrm{~m} / \mathrm{s} \mathrm{ax}=0$

Step 3: Use formulas to solve for unknown. Cancel out units!!!
Part I:
$\mathrm{Vf}^{2}=\mathrm{V}_{\mathrm{i}}{ }^{2}+2\left(\mathrm{a}_{\mathrm{y}}\right)\left(\mathrm{d}_{\mathrm{y}}\right)$
$0=4737.5-19.62\left(\mathrm{~d}_{\mathrm{y}}\right)$
$\mathrm{d}_{\mathrm{y}}=241.5 \mathrm{~m}$
$a_{y}=\frac{V_{f y}-\underline{V_{i y}}}{t}$
$-9.81=\frac{0-68.83}{t}$
$\mathrm{t}=7.01 \mathrm{~s}$

Part II (Use $\mathrm{t}=7.01$ found from Part I)

$$
\begin{aligned}
& \mathrm{d}_{\mathrm{x}}=\left(\mathrm{V}_{\mathrm{ix}}\right)(\mathrm{t}) \\
& \mathrm{d}_{\mathrm{x}}=(98.3)(7.01) \\
& \mathrm{d}_{\mathrm{x}}=\mathbf{6 8 9 . 4} \mathbf{~ m}
\end{aligned}
$$

