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Abstract

The propagation of waves and instabilities in a plasma medium consisting of
concatenation of two magnetohydrodynamic (MHD) fluids by including the
effect of relative motion at relativistic speed among the two fluid components.
One of the fluid is an ultrarelativistic [kT‖,⊥� mc2] plasma moving at
relativistic speed with respect to the background non-relativistic anisotropic
plasma. The ultrarelativistic fluid has anisotropic temperature described by
double adiabatic equations. The pressure components of the anisotropic
background plasma are given by generalized polytropic laws. The linearized
analysis is carried out and dispersion relation is derived using normal mode
technique. The dispersion relation is discussed both analytically as well as
numerically for parameters which simulate cosmic rays and the background
inter-stellar medium. An additional mode of propagation, the suprathermal
mode, is the only mode which transports energy in the direction perpendicular
to the ambient magnetic field. This mode is affected by the presence of
relative motion between the components. For large enough value of the
relative speed between the components its phase speed vanishes in the
direction perpendicular to the magnetic field. In this case the system does not
allow transport of energy transverse to the magnetic field. Situations where
this model supports instabilities are also discussed.

INTRODUCTION

Many astrophysical objects move outward from their source of origin and may
pervade regions having a qualitatively different plasma which in many cases
may be non-relativistic. The interaction between these two plasma systems
may influence collective phenomena, in particular propagation of
hydromagnetic waves in this region. It is then desirable to describe the medium
as a concatenated system of two infinitely conducting MHD fluids coupled
together by the ambient magnetic field. The nature of interaction between the
two fluids is determined by the scale length of the small-scale irregularities in
the large scale ambient magnetic field. A simple model consisting of a thermal
interstellar plasma mixed with a suprathermal cosmic ray plasma was pioneered
by Parker[1]. Recently, Kumar and Singh[2] investigated the effect of relative
motion among the two components of the concatenated plasma medium in a
nonrelativistic domain. In the present study the concatenated system simulates
the cosmic ray fluid by an ultrarelativistic anisotropic plasma streaming with
relativistic speed relative to the background inter-stellar medium which is
considered to be a nonrelativistic anisotropic plasma.

BASIC EQUATIONS

The magnetic field constrains the two fluids to move together in a direction
transverse to the field but it cannot prevent them from moving independently
in the direction along the field. Assuming an equilibrium flow velocity of V0ẑ
for fluid 1, the basic equations of the problem are obtained by linearization of
the set of basic equations of the concatenated model given by Kalra and
Kumar[3]. Under the assumption of perfect conductivity, Ohms law together
with Faraday’s law gives the following linearized equation for the perturbed
magnetic field(denoted by b):

∂b

∂t
= ∇× (v1 × B0 + V0 × b) = ∇× (v2 × B0), (1)

It is evident from Eq.(2) that the corresponding perpendicular components of
the velocities of the two fluid are related as:

v1x = v2x + V0
bx

B0

, v1y = v2y + V0
by

B0

. (2)

Here the pressure of the plasma components is given by

p1,2 = (p‖1,2
− p⊥1,2)nn + p⊥1,2I,

where p‖1,2
, p⊥1,2 denote the pressure parallel and perpendicular to the

direction of magnetic field, respectively. n denotes a unit vector along the
direction of the magnetic field and I represents the unit second order tensor.
For the closure of the relativistic gyrotropic MHD equations, the above
equations are supplemented by the equations of state (EOS).
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I EOS for Fluid2: The double polytropic
law
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where γ‖2
and γ⊥2 are the polytropic indices of fluid 2.

DISPERSION RELATIONS

Any arbitrary perturbation of the system can be assumed to have the form of a
plane wave and can be expressed in the form ∝ exp{i(ωt− k · r)}. Carrying
out the usual normal mode analysis, one gets the following dispersion relations
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The general dispersion relation of the present problem is eighth order in ω
indicating the existence of eight wave modes (four forward and four backward
propagating independent disturbances). This is the outcome of the
two-population MHD model.

NUMERICAL COMPUTATIONS

The situation in space can simulated to be a concatenation of two anisotropic
MHD fluids composed of a cosmic ray fluid (component 1: ultrarelativistic)
and background inter-stellar plasma (component 2: nonrelativistic).To
investigate such a situation, we adopt the relevant astrophysical
parameters[1, 4]. The system does not support propagation of any MHD
modes and the system is firehose unstable for those parameters which satisfy
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is the ratio of densities of fluid 2 to fluid 1. Figure 1 shows the plot of F
versus β, the relative speed between the components normalized to speed of
light for different density ratios d of the two MHD components comprising the
system. Figure 2 depicts the polar plot of phase speeds of the four modes
(slow, fast, Alfven and Suprathermal)of wave propagation in the system.
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The suprathermal mode(ST) is the only
mode which propagates in a direction
perpendicular to the magnetic field. Its
propagation characteristics are examined
in Fig. 3 for different values of relative
speed. For large enough value of relative
speed of motion among the components,
the phase speed of both the forward and
backward propagating suprathermal mode
vanishes in a direction perpendicular to
the magnetic field.

I Figure 3

In this case there is no transport of energy in a direction transverse to the
magnetic field. This feature of ST is a result of relative motion at relativistic
speed among the components of the two-population plasma system.
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