Chapter-1 **INNOVATIVE METHOD FOR THE PREDICTION OF THE HYBRIDIZATION STATE OF** SIMPLE MOLECULES & IONS

Arijit Das

Department of Chemistry, Bir Bikram Memorial College, Agartala, Tripura, India Email: arijitdas78chem@gmail.com

In this innovative chapter, formula-based mnemonics by counting total number of σ bonds and lone pair of electrons (T_{SLP}) and subtract one (01) from this total value of T_{SLP} to predict the power of the hybridization state have been highlighted by innovative and time economic way to enhance interest of students' who belong to paranoia zone of chemistry for the prediction of hybridization state of simple molecules or ions by using conventional method. Educators can use these mnemonics in their teaching style in the classroom lectures after discussing conventional methods to make chemistry intriguing. Here, I have tried to focus four (04) time economic mnemonics by including one (01) formula for the prediction of hybridization state of simple molecules or ions. This chapter encourages students to solve multiple choice type questions (MCQs) at different competitive examinations in a time economic ground on the prediction of hybridization state of simple molecules or ions to know their normal and subnormal geometry. This innovative chapter emphasizes chemical education in the light of a variety of mnemonic techniques to make chemistry metabolic, time economic and intriguing for students because the use of mnemonics in classroom lectures is an essential tool to become a distinguished educator.

The conventional formula for determination of hybridization state of simple molecules or ions is timeconsuming ¹⁻⁷. Keeping this in mind, in this innovative pedagogical chapter, I have introduced some innovative mnemonics to make chemistry metabolic, time economic and interesting 8-10.

^{1.} L. Pauling, "The Nature Chemical Bond. Application of Results Obtained from the Quantum Mechanics and from a Theory Susceptibility to Structure of Molecules". J.Am. Chem. Soc. 53(1931):1367-1400. of Paramagnetic the doi:10.1021/ja01355a027, https://pubs.acs.org/doi/abs/10.1021%2Fja01355a027.

^{2.} L. Pauling and P. Pauling, Chemistry (Freeman International Ed. : 1975), 148, 163-167.

^{3.} James S. Wright, "Theoretical Evidence for a Stable form of Cyclic Ozone, and its Chemical Consequences", Can. J. *Chem.* 51 (1973): 139-146, http://www.nrcresearchpress.com/doi/10.1139/v73-020#.XEsGBtIza1s. **4.** J. D. Lee, *Concise Inorg.Chem.* (Wiley India and Oxford, 5th ed. : 2009), 944, 109-112.

^{5.} J. E. Huheey, et.al. Inorganic Chemistry (Pearson, 4th ed., India: 2006), 172-185.

^{6.} B. Douglas et.al. Concepts and Models of Inorg. Chem. (Wiley India, 3rd ed.: 2007), 157, 38.

^{7.} F.A. Cotton et.al. Basic Inorg.Chem. (Wiley India, 3rd ed. : 2007),107, 523, 111.

^{8.} A.Das et.al "Innovative And Time Economic Pedagogical Views In Chemical Education - A Review Article", World ofChemical Education (July 2014): 29-38. doi:10.12691/wjce-2-3-1, Journal http://pubs.sciepub.com/wjce/2/3/1/index.html#.

^{9.} A. Das and B. Paul "Time Economic Innovative Pedagogies In Chemical Science - A Review Article", Education in Chemical Science and Technology, Indian Chemical Society 3 (Aug 2015): 1-28.

^{10.} A. Das, "A Review of Time Economic Innovative Mnemonics In Chemical Education", *International Journal of Physics & Chemistry Education* 10(June 2018): 27-40,doi: 10.12973/ijpce/81589, http://www.ijpce.org/A-Review-of-Time-Economic-Innovative-Mnemonics-in-Chemical-Education,81589,0,2.html.

Here, I have tried to discuss them abruptly along with their limitations, applications, and problems in the different competitive examinations.

METHODOLOGY

A. Hybridization state theory

Prof. Linus Pauling (1931), first developed the Hybridization state theory in order to explain the structure of molecules such as methane (CH₄) using atomic orbitals^{1,2}. This concept was developed for simple chemical systems but this one applied more widely later on and from today's point of view, it is considered an operative empirical for excusing the structures of organic and inorganic compounds along with their related problems. In hybridization, intermixing of orbitals of the same atom with slightly different energies takes place, resulting in the formation of the same number of new orbitals called hybrid orbitals with equal energies and shape.

The mixing pattern is as follows:

one s + one p = sp hybrid orbital, one s + twp p = sp² hybrid orbital, one s + three p = sp³ hybrid orbital, one s + three p + one d $(d_{z}^{2}) = sp^{3}d$ hybrid orbital, one s + three p + two d $(d_{x2-y2}, d_{z}^{2}) = sp^{3}d^{2}$ hybrid orbital and one s + three p + three d $(d_{xy}, d_{yz}, d_{xz}) = sp^{3}d^{3}$ hybrid orbital.

The ability of the hybrid orbitals to overlap is in the order $sp^3 > sp^2 > sp$, greater the p character, greater is the ability to overlap and stronger will be the bond. Whereas the bond angles formed by different hybrid orbitals are in the order sp $(180^0) > sp^2(120^0) > sp^3(109.5^0)$, greater the s-character, greater is the bond angle. Electronegativity of carbon also depends upon the state of hybridization. More the s-character in hybridization more is the electronegativity. Thus the order of electronegativity of C atom is $C_{sp} > C_{sp2} > C_{sp3}$.

Some important facts about hybridization

i)Orbitals of comparable energies belonging to same atom or ion can undergo hybridization.

ii)The number of hybrid orbitals is equal to the number of atomic orbitals mixed during hybridization.

iii)Half filled, fully filled or even empty atomic orbitals of similar energy can participate in hybridization.

iv)All the hybrid orbitals resulting from a particular type of hybridization is similar in all respect (same energy, shape, and size).

v)The hybrid orbitals are distributed in space as far apart as possible and hence assign a particular shape and geometry to the molecule.

vi)Hybrid orbitals follow Hund's rule and also Pauli's exclusion principle like atomic orbitals.

vii)The bond formed between hybrid orbitals is known as hybrid bond and is stronger than non-hybrid bonds of comparable length.

Hybrid orbitals are the dumb-bell type with a larger lobe having a (+ve) sign and a smaller lobe having a (-ve) sign.

B. The conventional method for prediction of hybridization state

VALANCE SHELL ELECTRON PAIR REPULSION THEORY (VSEPR THEORY):

VSEPR theory was given by Sidgwick and Powell in 1940 and further improved by Nyholm and Gillespie in 1957. In a molecule, the central atom is surrounded by shared pairs of electrons (bond pairs) as well as nonbonding electrons (lone pairs). The main concept of the theory is that the electron pairs surrounding the central atom repel each other and move away from one another to occupy the most appropriate position in such a way that there are no further repulsions between them, and molecule is in the state of minimum energy and maximum stability. This arrangement gives a particular shape to the molecules. The order of repulsion between electron pairs is lone pair-lone pair (LP-LP) > lone pair – bond-pair (LP-BP) > bond pair – bond-pair (BP-BP). If the central atom is surrounded by only bond pairs of similar atoms, the repulsive interactions are equivalent and molecule has regular geometry. If the central atom is surrounded by only bond pairs of surrounded by only bond pairs of dissimilar atoms, the repulsive interactions are not equivalent and the molecule will not have the regular geometry. If the central atom is surrounded by both bond pairs and lone pairs, the repulsive interactions are very much different and molecular geometry will be distorted from the regular one.

The conventional formula used for the prediction of hybridization state

Hybridization state for a molecule calculated by the formula 1/2 (V+MA–C+A), where, V = Number of valance electrons in the central atom, MA = Number of surrounding monovalent atoms, C = Cationic charge, A = Anionic charge.

Eg: Methane CH₄, $P = 1/2 (4 + 4 - 0) = 4 (sp^3 hybridization state)$; Ethylene (CH₂ = CH₂), $P = 1/2 (4 + 2 - 0) = 3 (sp^2 hybridization state)$

C. Innovative method for predicting hybridization state of simple molecules or ions

i)Prediction of sp, sp², sp³ Hybridization state

Hybridization is nothing but the mixing of orbital's in different ratio and the newly mixed orbitals called hybrid orbitals. The mixing pattern is as follows:

s + p(1:1) - sp hybrid orbital; $s + p(1:2) - sp^2$ hybrid orbital; $s + p(1:3) - sp^3$ hybrid orbital

Formula: prediction of sp, sp², and sp³ hybridization state

Power on the hybridization state of the central atom $(P_{Hyb}) = (T_{SLP}) - 1$

where, P_{Hyb} = Power on the hybridization state of the central atom, T_{SLP} = (Total no of σ bonds around each central atom + LP).

From the Lewis structure of a molecule, first of all, predict the number of sigma bonds (σ -bonds), pi bonds (π -bonds) and the lone pair of electrons (LP) if any. All single (-) bonds are the σ bond, in the double bond (=),

there is 1σ and 1π , in triple bond (\equiv) there is 1σ and 2π (exclude π bond). In addition to these, each Co-ordinate

bond (\rightarrow) can be treated as 1σ bond. This formula is applicable up to four (04) T_{SLP}.

If the power of the hybridization state (P_{Hyb}) will be 03, 02 and 01 then the hybridization state will be sp³, sp² and sp respectively^{8, 11,12}.

ii)Prediction of sp³d, sp³d², sp³d³ Hybridization state

In case of sp³d, sp³d² and sp³d³ hybridization state there is a common term sp³ for which four (04) T_{SLP} is responsible. So, with four (04) T_{SLP} , for each additional T_{SLP} (additional sigma bond or lone pair of electron), added one d orbital gradually as follows:-

5 $T_{SLP} = 4 T_{SLP} + 1$ additional $T_{SLP} = sp^3d$ hybridization

6 $T_{SLP} = 4 \ T_{SLP} + 2$ additional $T_{SLP} \ = sp^3d^2$ hybridization

7 $T_{SLP} = 4 T_{SLP} + 3$ additional $T_{SLP} = sp^3d^3$ hybridization

In case of cationic species, requisite electron/electrons must be removed from the outermost orbit of the central atom and in case of anionic species, added requisite electron/electrons with the outermost electrons of the central atom ^{8,11,12}.

^{11.} A. Das, "Innovative Mnemonics In Chemical Education: Review Article", *African Journal of Chemical Education* 8, (July 2018): 144-189, https://www.ajol.info/index.php/ajce/article/view/176086.

^{12.} A. Das, "Innovative Mnemonics Make Chemical Education Time Economic – A Pedagogical Review Article", *World Journal of Chemical Education*, 6.4 (Sept 2018): 154-174, doi:10.12691/wjce-6-4-2, http://pubs.sciepub.com/wjce/6/4/2/index.html.

RESULTS AND DISCUSSION

1. Innovative mnemonics for predicting hybridization state of simple molecules or ions

i)Prediction of the hybridization state (sp, sp² & sp³) of simple molecules and ions can be well explained in the following way:

Ex.a. NH₃: In NH₃, central atom N is surrounded by three N-H single bonds i.e. three (03) sigma (σ) bonds and one (01) lone pair (LP). So, T_{SLP} = 4, in NH₃, hence, power on the hybridization state of N in NH₃, (P_{Hyb}) = (T_{SLP}) – 1= (3+1)-1 = 3 i.e. hybridization state = sp³.

Ex.b.H₂O: In H₂O, central atom O is surrounded by two O-H single bonds i.e. two (02) sigma (σ) bonds and two (02) lone pairs. So, in this case, power on the hybridization state of O, (P_{Hyb}) = (T_{SLP}) – 1= = (2+2)-1 = 3, i.e. hybridization state of O in H₂O = sp³.

Ex.c.H₃BO₃:- In H₃BO₃, B has (**Fig. 1.1**), three (03) σ bonds only (LP = 0) and oxygen has two (02) σ bonds and two (02) lone pair of electrons, so, in this case, power on the hybridization state of B, (P_{Hyb}) = (T_{SLP}) – 1= (3+0)-1 = 2 i.e. B is sp² hybridized in H₃BO₃. On the other hand, the power of the hybridization state of O, (P_{Hyb}) = (T_{SLP}) – 1 = (2+2)-1 = 3 i.e. hybridization state of O in H₃BO₃ is sp³.

Fig. 1.1 Structure of H₃BO₃ and C₂H₄

Ex.d.CH₂ = CH₂: In C₂H₄, each carbon (**Fig. 1.1**), is attached with two (02) C-H single bonds (2 σ bonds) and one C=C bond (1 σ bond), so, altogether there are 3 sigma bonds. So, in this case, the power on the hybridization state of both C, (P_{Hyb}) = (T_{SLP}) – 1= (3+0)-1 = 2 i.e. hybridization state of both carbons are sp².

Ex.e. I-Cl: In I-Cl, I and Cl both have one (01) σ bond and three (03) lone pair of electrons, so, in this case, power on the hybridization state of both I and Cl, (P_{Hyb}) = (T_{SLP}) – 1= (1+3) - 1 = 3 i.e. hybridization state of I and Cl both are sp³.

Ex.f. O₃: Ozone (O₃) exists as a stable form of cyclic ozone (**Fig. 1.2**) and its structure is equilateral triangle^{2,3}. In which each center O atom has two (02) O-O single bonds (2σ bonds) and two (02) lone pair of electrons. So,

in this case, power on the hybridization state of central O atom $(P_{Hyb}) = (T_{SLP}) - 1 = (2+2) - 1 = 3$ i.e. hybridization state of center atom O in cyclic O₃ is sp³.

Fig. 1.2 Equilateral triangle structure of cyclic ozone (O₃)

But the resonance description of ozone involves two structures (**Fig. 1.3**), in which, the central oxygen atom of ozone will have sp² hybridization state. In this case, the central O atom has two (02) σ bonds and one (01) lone pair of electron (LP = 01), hence, power on the hybridization state of central O atom in resonance hybrid of ozone, (P_{Hyb}) = (T_{SLP}) – 1= (2+1) - 1 = 2 (sp²).

Fig. 1.3 Resonating structures of Ozone (O₃)

Ex.g. S₈: The ordinary form of sulfur (orthorhombic sulfur, yellow crystals) contains octatomic molecules (S₈), in which, S can form single covalent bonds with two other S atoms in a zigzag fashion (**Fig. 1.4**), into a long chain. In this case, each sulfur atom attached with two (02) adjacent σ bonds and two (02) lone pair of electrons (LP = 2). Hence, power on the hybridization state of any S atom (P_{Hyb}) = (T_{SLP}) – 1= (2+2) - 1 = 3 i.e. hybridization state of S atoms in S₈ is sp³.

Fig. 1.4 Zigzag structure of S₈ and Tetrahedron structure of P₄

Ex.h.P₄: In P₄, the four P atoms are arranged at the corners of a regular tetrahedron (**Fig. 1.4**). Here, each P atom forms three covalent bonds (3σ bonds) and one lone pair electron (LP = 1). Hence, power on the hybridization state of any P atom (P_{Hyb}) = (T_{SLP}) – 1= (3+1) - 1 = 3 i.e. hybridization state of P atoms in P₄ is sp³.

Ex.i. CO_3^{2-} : In the valence bond structure of carbonate ion (CO_3^{2-}), the central carbon atom does not contain any lone pair electron (LP = 0) but it has three (03) σ bonds (**Fig. 1.5**). Hence, power on the hybridization state of central C atom in carbonate ion, (P_{Hyb}) = (T_{SLP}) – 1= (3+0) - 1 = 2 (sp²). But in resonance hybrid of CO_3^{2-} (**Fig. 1.6**), carbon atoms are in sp² hybridization state due to 3 σ bonds and no lone pair of electrons (LP = 0).

Fig. 1.5 Valence bond structure of carbonate ion (CO₃²⁻)

Fig. 1.6 Resonance hybrid of CO₃²⁻

ii)Prediction of the hybridization state (sp^3d , sp^3d^2 & sp^3d^3) of simple molecules and ions can be well explained in the following way

Ex.a. I_3 : In Tri iodide ion (I_3), central I atom has 2σ bonds and 3 lone pairs of electrons (LP = 3) (**Fig.1.7**). Hence for central I, there is 5 T_{SLP} So, 5 T_{SLP} = 4 T_{SLP} + 1 additional T_{SLP} = sp³d hybridization.

Fig. 1.7 Linear structure of triiodide ion (I₃⁻)

Ex.b. IF₄⁺: In IF₄⁺ (**Fig. 1.8**), I have 7 e⁻s in its outermost shell, so, in this case, subtract one e⁻ from 7 i.e. 7 – 1 = 6. So, out of 6 electrons, 4 electrons form four (04) I-F σ bonds and there is one (01) LP. So, altogether there are 5 T_{SLP}. So, 5 T_{SLP} = 4 T_{SLP} + 1 additional T_{SLP} = sp³d hybridization.

Ex.c. XeF₄: In XeF₄ (**Fig. 1.8**), Xe, an inert gas, consider 8 e⁻s in its outermost shell, four (04) of which form four (04) Xe-F sigma bonds and there are two (02) lone pair of electrons, so, altogether there is 06 $T_{SLP} = 4 T_{SLP}$ + 2 additional $T_{SLP} = sp^3d^2$ hybridization.

Fig. 1.8 Structure of IF₄⁺and XeF₄

Ex.d. IF₇: In IF₇, there is seven (07) I-F single bonds i.e. 7σ bonds and no lone pair of electron (LP=0), so, altogether there is 07 T_{SLP} = 4 T_{SLP} + 3 additional T_{SLP} = sp³d³ hybridization.

THE GEOMETRY OF SIMPLE MOLECULES OR IONS

In absence of lone pair electrons (LPs) a molecule or ion exhibits regular geometry (**Fig. 1.9**). For sp, sp², sp³, sp³d, sp³d², and sp³d³ hybridization state, geometry will be linear, trigonal planar, tetrahedral, trigonal bipyramid, octahedral and pentagonal bipyramid respectively, whereas for the same hybridization state in presence of the lone pair of electrons they exhibit subnormal geometry (**Fig. 1.10**)^{8,11,12}.

(Trigonal bipyramidal, sp³d, LP=0)

(Octahedral, sp^3d^2 , LP=0)

(Petntagonal bipyramidal, sp^3d^3 , LP = 0)

Fig.1.9 Regular / Normal Molecular Geometry without Lone pair of electrons

Adequate examples on prediction of the hybridization state from the corresponding T_{SLP} value (total number of σ bonds around the central atom + lone pair of electron on central atom) of the central atom have been explored in **Table 1.1** and molecular geometry (normal and sub-normal) and bond angle with respect to the corresponding hybridization state and lone pair of electrons of simple molecules or ions have been displayed in **Table 1.2**.

T _{SLP}	Nature of	Examples			
(Total number of σ bonds + LP)	Hybridization State				
2	sp	BeCl ₂ , HgCl ₂ ,C ₂ H ₂ ,CO ₂ ,CO,CdCl ₂ , ZnCl ₂ etc.			
3	sp ²	BCl ₃ , AlCl ₃ ,C ₂ H ₄ ,C ₆ H ₆ ,SO ₂ ,SO ₃ ,HNO ₃ ,			
		H_2CO_3 , $SnCl_2$, $PbCl_2$ etc.			
4	sp ³	NH_4^+ , BF_4^- , H_2SO_4 , $HClO_4$, PCl_3 , NCl_3 , $AsCl_3$,			
		HClO ₃ ,ICl ₂ ⁺ ,OF ₂ ,HClO ₂ ,SCl ₂ ,HClO, ICl, XeO ₃ etc.			
5	sp ³ d	PCl ₅ , SbCl ₅ , SF ₄ , ClF ₃ , BrF ₃ , XeF ₂ , ICl ₂ ⁻ etc.			
6	sp ³ d ²	SF ₆ , AlF ₆ ³⁻ , SiF ₆ ²⁻ , PF ₆ ⁻ , IF ₅ , BrF ₅ , XeOF ₄ , XeF ₄ , BrF ₄ ⁻ , ICl ₄ ⁻			
		etc.			
7	sp ³ d ³	IF ₇ , XeF ₆ etc.			

Table 1.1 T_{SLP} and corresponding hybridization state

Table 1.2 Hybridization, Molecular Geometry, and Bond Angles

Hybridization	LP	Molecular Geometry (Regular / Normal)	Approximate Bond Angles (Degree)	Examples	LP	Molecular Geometry (Sub-norma	Approximate Bond Angles (Degree)	Example
sp	0	Linear	180	CO ₂ , CS ₂ ,BeCl ₂ , HgCl ₂	_	-	-	-
sp ²	0	Trigonal Planar or Triangular Planar	120	BH ₃ , AlCl ₃ , C ₂ H ₄ , BCl ₃ , BF ₃ , NO ₃ ⁻ , CO ₃ ²⁻	01	Angular or V-shape	<120	SO ₂ , NO ₂ ⁻
					01	Pyramidal	<109.5	NH ₃ , PH ₃ , AsH ₃
sp ³	0	Tetrahedral	109.5	BH4 ⁻ , BF4 ⁻ , SnCl4, H ₂ SO4, HClO4, SiCl4	02	Bent shape or V- shape	<109.5	H ₂ O, H ₂ S, H ₂ Se
					03	Linear	180	ICl, BrF, ClF

			120 (equatorial)		01	See-Saw	<120(equatorial <90 (axial)	SF ₄
sp ³ d	0	Trigonal bipyramid	90 (axial)	PF ₅ , PCl ₅	02	T-shape	<90	ICl ₃ , F ₃ Cl
					03	Linear	180	XeF ₂ , I ₃ -
sp ³ d ²	0	Octahedral	90	SF ₆ , TeF ₆ ,	01	Square pyramidal	<90	IF ₅ , BrF ₅
	WF_6 , SeF_6 , $SnCl_6^{2-}$	02	Square planar	90	XeF ₄			
sp ³ d ³	0	Pentagonal bipyramid	72 & 90	IF7	01	Pentagonal Pyramidal or Distorted	72 & 90	XeF ₆
						Distorted octahedral		

BOND ANGLE OF SIMPLE MOLECULES OR IONS

The angle between the two covalent bonds of a molecule is called the bond angle. When in covalent bonds, bond pair electron clouds, are adjacent to each other, then, due to excessive repulsive force between two adjacent bond pair electron clouds, the bond angle increases. When bond pair electron clouds move towards the central atom instead of the peripheral atom, then, they are adjacent to each other and exhibit much more repulsive force, which increases the bond angle of the molecule. So, the mainly responsible repulsive force for bond angle prediction is a bond pair – bond-pair (BP-BP) repulsion. If there is any other repulsive force greater than BP-BP repulsions, such as lone pair-lone pair (LP-LP) or lone pair-bond pair (LP-BP) repulsion, in this particular case, BP-BP repulsion not freely act, hence, bond angle diminishes. The order of repulsive force is a lone pair-lone pair (LP-BP) > bond pair – bond-pair (BP-BP).

Factors affecting the bond angle of simple molecules or ions:

i) Different Repulsive force: The order of bond angle depends on different repulsive forces is as follows bond pair – bond-pair (BP-BP) > lone pair – bond-pair (LP-BP) > lone pair-lone pair (LP-LP).

$$(LP = 0)$$
 $(LP = 1)$ $(LP=2)$

Thus, with increasing number of lone pair electrons, bond angle decreases.

Ex. The bond angle of methane (CH₄), ammonia (NH₃) & water (H₂O), follows the order: methane (CH₄) > ammonia (NH₃) > water (H₂O). In methane (CH₄), LP on C = 0 and only BP-BP repulsion is there, in ammonia

(NH₃), LP of N = 1 and hence, two repulsive forces (LP-BP & BP-BP) are there, in water (H₂O), LP on O = 2, hence, three types of repulsive forces (LP-LP, LP-BP & BP-BP) are there.

ii) Electronegativity of the central atom (when repulsive force and peripheral atoms are same): When a pair of molecules, having the same repulsive force, in which, peripheral atoms are the same but central atoms are different, then, bond angle increases with increasing electronegativity values of the central atom due to much more repulsive interactions between two adjacent bond pair electron clouds, shifted towards higher electronegative central atom.

Ex. In between H₂O and H₂S, both exhibit the same repulsive forces (LP-LP, LP-BP & BP-BP). Here, peripheral atoms are same 'H' but central atoms are different 'O' & 'S'. In between oxygen and sulfur, since, central atom 'O' in H₂O is much more electronegative (E.N. of O = 3.5) than central atom 'S' in H₂S (E.N. of S = 2.5), therefore, oxygen attracts bond pair electron clouds towards itself more closely than that of sulfur. As a result of it, bond pair-bond pair repulsion between two bond pair electron clouds will be much more in water, H₂O than that of H₂S. Hence, bond angle of H₂O > H₂S.

ii) Electronegativity of the peripheral atom (when repulsive force and central atoms are same): When, pair of molecules, having same repulsive force, in which, central atoms are same but peripheral atoms are different, then, bond angle decreases with increasing electronegativity values of the peripheral atom due to much less repulsive interactions between two bond pair electron clouds, shifted towards higher electronegative peripheral atom.

Ex. In between NH₃ and NF₃, both have LP =1 and hence, exhibit same repulsive forces (LP-BP & BP-BP). Here, central atoms are same 'N' but peripheral atoms are different 'H' & 'F'. In between fluorine and hydrogen, since, peripheral atom 'F' in NF₃ is much more electronegative (E.N. of F = 4.0) than peripheral atom 'H' in NH₃ (E.N. of H = 2.1), therefore, fluorine attracts bond pair electron clouds towards itself more closely than that of hydrogen. As a result of it, bond pair-bond pair repulsion between two adjacent bond pair electron clouds will be much more in ammonia, NH₃ than that of NF₃. Hence, bond angle of NH₃ > NF₃.

APPLICATIONS OF HYBRIDIZATION STATE IN CHEMICAL FIELD:

Hybridization state has a variety of applications as follows:

1. Hybridization state used in the prediction of dipole moment (μ) as well as polarity.

Ex.a. Cis-2-butene is polar whereas trans-2-butene is a nonpolar described as follows with the help of hybridization state (**Fig. 1.11**)

% of s character is directly proportional to the electronegativity, hence electronegativity order is sp - C (s 50%) > sp² - C (s 33.3%) > sp³ - C (s 25%)

2. Hybridization state used in the prediction of acidic order of hydrocarbons (alkyne, alkene, and alkane).

Ex.b. Acidic order of alkyne, alkene, and alkane can be well explained as follows:

 $sp \quad sp \quad sp^2 \quad sp^2 \quad sp^3 \quad sp^3$ Decreasing acidic order is alkyne (HC = CH) > alkene (H₂C = CH₂) > alkane (H₃C - CH₃)

Alkyne having sp hybridized carbon atoms, whereas, alkene having sp² hybridized carbon atoms and alkane having sp³ hybridized carbon atoms. Since, % of s character α electronegativity and electronegativity of carbon in hydrocarbons α proton donation tendency (Acidity), hence, electronegativity order is

sp - C (s 50%) > sp² - C (s 33.3%) > sp³ - C (s 25%) and thus, decreasing acidic order is alkyne (HC \equiv CH) > alkene (H₂C = CH₂) > alkane (H₃C - CH₃).

3. Hybridization state used in the prediction of basic order.

Ex.c. Basic strength between amine (-NH₂) and nitrile (-CN) can be explained as follows:

Nitrogen atom in methylamine (CH₃NH₂) is sp³ hybridized (% s character = 25%) and in methyl cyanide (CH₃C=N) is sp hybridized (% s character = 50%). With % s character electronegativity increases. Hence, sp N of methyl cyanide (CH₃C=N) is more electronegative than methylamine (CH₃NH₂), which (sp N of methyl cyanide), tightly holds the lone pair of electrons on it and thus less readily available for protonation or donation and thus decreases basic character of methyl cyanide (CH₃C=N) with respect to methylamine (CH₃NH₂).

4. Hybridization state used in the prediction of normal and subnormal geometry.

Simple molecules or ions having LP = 0 (LP = lone pair of electrons), show normal geometry, whereas, (LP \neq 0), show subnormal geometry (Table 1.2).

5. Hybridization state is useful for the prediction of bond length and bond strength of any bonds.

Power of the hybridization state (P_{Hyb}), is directly proportional to bond length and inversely proportional to the bond strength of bonds. Generally, mixing of hybridization state decreases bond length value and in such cases, with decreasing power of the mixed hybridization state, bond length value decreases.

Ex.d. C-C:sp³-sp³, $P_{Hyb} = 3+3 = 6$, C-C bond length = 1.54Å; C-C sp³-sp², $P_{Hyb} = 3+2 = 5$, C-C bond length = 1.50Å; C-C : sp³-sp , $P_{Hyb} = 3+1 = 4$, C-C bond length = 1.46Å

 $C=C: sp^{2}-sp^{2}, P_{Hyb}=2+2=4, C-C \text{ bond length}=1.34 \text{ Å}; C=C sp^{2}-sp \text{ , } P_{Hyb}=2+1=3, C-C \text{ bond length}=1.31 \text{ Å}$

C=C : sp-sp, $P_{Hyb} = 1+1 = 2$, C-C bond length = 1.21Å

sp-H, $P_{Hyb} = 1$, C-H bond length = 1.08\AA .

C-O: sp³-O, $P_{Hyb} = 3$, bond length = 1.41Å; C=O: sp²-O, $P_{Hyb} = 2$, bond length = 1.20Å

C-N: sp^3 -N, $P_{Hyb} = 3$, bond length = 1.47Å; C=N: sp^2 -O, $P_{Hyb} = 2$, bond length = 1.28Å;

C=N: sp-N , $P_{Hyb} = 1$, bond length = 1.16Å

6. Bond angle can also be evaluated from the hybridization state.

Bond angle is directly proportional to the s character of a hybrid orbital as follows:

Bond angle follows the order

 $sp - C (50 \% s) > sp^2 - C (33.3 \% s) > sp^3 - C (25\% s)$

PROBLEMS ON HYBRIDIZATION & GEOMETRY

Q1. Which of the following pairs of ions is isoelectronic and isostructural? (NEET II-2016)

a.CO3²⁻,NO3⁻ b.ClO3⁻,CO3²⁻ c. SO3²⁻,NO3⁻ d.ClO3⁻,SO3²⁻

Ans: a & d

(CO₃²⁻,NO₃⁻ both have 32 e⁻s, sp², LP=0, trigonal planar geometry) & (ClO₃⁻, SO₃²⁻ both have 42 e⁻s, sp³, LP=1,

pyramidal geometry)

Q2. The correct geometry and hybridization for XeF₄ are (NEET II 2016)

a.octahedral, sp^3d^2 b. trigonal bipyramidal, sp^3d c. planar triangle, sp^3d^3 d. square planar, sp^3d^2

Ans: d - square planar, sp³d²

Q3. XeF₂ is iso-structural with (NEET 2013)

 $a.SbCl_3 \quad b.BaCl_2 \ c.TeF_2 \ d. \ ICl_2^-$

Ans: d. ICl2⁻ sp3d linear

Q4. The structure of IF₇ is (AIEEE 2011)

a.Square pyramid b. trigonal bipyramid c. octahedral d. petagonal bipyramid

Ans: d. IF₇ - sp³d³ LP=0, petagonal bipyramid (Normal Geometry).

Q5. Consider the state of hybridization of carbon atoms, find out the molecule among the following

which is linear ?	(CBSE PMT 2011)
$a.CH_3 - CH = CH - CH_3$	b. $CH_3 - C \equiv C - CH_3$
c. $CH_2 = CH - CH_2 - C \equiv CH$	$d. \ CH_3-CH_2-CH_2-CH_3$

Ans: b. $CH_3 - C \equiv C - CH_3$ (both $-C \equiv C$ – will be in sp hybridization state and LP = 0)

Q6. Base strength of H₃C-CH₂⁻ (i), H₂C = CH⁻ (ii) and H - C \equiv C⁻ (iii) is in the order of

 $a.(i) > (iii) > (ii) \qquad b. (i) > (ii) > (iii) \qquad c. (ii) > (i) > (iii) \qquad d. (iii) > (ii) > (i)$

Ans: b. (i) > (ii) > (iii)

Acidic order is $H-C \equiv C-H > H_2C = CH_2 > H_3C-CH_3$

since stronger acid will have weaker conjugate base therefore, order of the conjugate base of the

above acid is $H_3CCH_2^- > H_2C = CH^- > H - C \equiv C^-$.

Q7. Methylamine (CH₃NH₂) is more basic than methyl cyanide (CH₃C=N). This is due to the which one of the

following reason

a. both having different (+I) effect group b. both having same (+I) effect group

c. both nitrogens having same s character d. both nitrogens have different s character

Ans: d. both nitrogens having different s character [stated in the application]

Q8. Which of the following species contains 3 bond pairs and one lone pair around the central atom? (NEET 2013)

a.H₂O b.BF₃ c. NH_2^- d.PCl₃

Ans: PCl_3 (LP = 1 and BPs = 3)

Q9. The hybridization of atomic orbitals of nitrogen in NO₂⁺, NO₃⁻ and NH₄⁺ respectively are (NEET & JEEMAIN 16)

a.sp, sp^3 and $sp^2\ \ \, b.$ $sp^2,$ sp^3 and sp c. sp, $sp^2,$ and $sp^3\ \ \, d.$ $sp^2,$ sp, and sp^3

Ans: c. sp, sp², and sp³

Q10. Total number of lone pair electrons in I₃⁻ ion is (JEE MAIN 2018)

a.3 b.6 c.9 d.12

Ans: c.9

Q11.Which of the following molecules represents the order of hybridization sp², sp², sp, sp from Left to Right atoms (NEET 18)

a. CH₂=CH-CH=CH₂ b. CH₂=CH-C=CH c. CH=C-C=CH d. CH₃-CH=CH=CH₃

Ans: b. CH₂=CH-C=CH (Limitation of Conventional Method)

Q12. In which of the following pair both have sp³ hybridization? (Karnataka NEET 2013)

a. SiF_4 , BeH_2 b. NF_3 , H_2O c. NF_3 , BF_3 d. H_2S , BF_3

Ans: b. NF₃, H₂O

Q13. The correct geometry and hybridization for XeF₄ are (NEET II 2016)

a.octahedral, sp^3d^2 b. trigonal bipyramidal, sp^3d c. planar triangle, sp^3d^3 d. square planar, sp^3d^2

Q14. Which of the following bonds is strongest?

a.H₃C-CH₃ b.
$$H_2C=CH_2$$
 c.H₃C-CH= d. HC=CH

Ans: d. HC≡CH

Q15. Which of the following is planar in shape?

a.Methane b.Acetylene c.Benzene d.Isobutane

Ans: c. Benzene (all six carbons are in sp² hybridized makes it planar)

Q16. Bond length among C-C in ethane (I), ethene (II) and ethyne (III) follows the order

 $a.I > II > III \qquad \qquad b.II > I > III \qquad \qquad c.III > I > II \qquad \qquad d.~III > II > I$

Ans: a. I > II > III [I (ethane, sp^3 , $P_{Hyb}=3$) > II (ethene, sp^2 , $P_{Hyb}=2$) > III (ethyne, sp, $P_{Hyb}=1$)

Q.17. Which of the following carbon atoms is most electronegative?

$$III II I I I H_3C - CH_2 - C \equiv CH$$

a. I b. II c. III d. all are equally electronegative

Ans: a. (sp C, s 50 %, % of s character α electronegativity)

Q.18.An sp³ hybrid orbital contains

a.1/4 s-character	b.1/2 s-character	c.2/3 s-character	d.3/2 s-character
-------------------	-------------------	-------------------	-------------------

Ans: a.1/4 s-character (s:p = 1:3 in sp³)

Q.19. In, CCl₄, the four valencies of carbon are directed towards the corner of a

a. Cube b.Hexagon c. Prism d.Tetrahedron

Ans: d.Tetrahedron (in CCl₄ - C is in sp^3 , BP = 0 & LP of C = 0, regular geometry) (See Table 1.2)

Q.20.In which of the following the angle between the two covalent bonds is largest?

a. H_2O b.N H_3 c.C O_2 d.C H_4

Ans: c.CO₂ (in O=C=O, hybridization sp & bond angle 180⁰) (See Table 1.2)

Q.21. Which has the minimum bond angle?

a. H_2O b. H_2S c. NH_3 d. CH_4

Ans: b. H_2S [Bond angle α 1 / number of lone pair of electrons (LPs) & (for same repulsive force), Bond angle α electronegativity of the central atom]

Q.22. Which of the following geometry is associated with the compound in which the central atom assumes

sp³d hybridization?

a.Planar b.Pyramidal c.Angular d.Trigonal bipyramidal

Ans: d.Trigonal bipyramidal (for hybridization sp³d - geometry is Trigonal bipyramidal) (See Table 1.2)

Q.23. The pyramidal geometry is associated with

 $a.CH_4 \qquad b.NH_3 \qquad c.H_2O \qquad d.CO_2$

Ans: b.NH₃ (See Table 1.2)

Q.24. According to VSEPR theory, which one of the following has ideal tetrahedral shape? (NET 2011)

a.SO₂ b.SO₃ c.SO₄²⁻ d.SO₃²⁻

Ans: $c.SO_4^{2-}$ (SO₄²⁻ is ideal because of the presence of same atoms and it has LP = 0 and BP = 4 around the S atom) (See **Table 1.2**)

Q.25. Which of the following molecules is linear?

a. C_2H_2 b.SiCl₄ c.CH₄ d.H₂Se

Ans: a. C_2H_2 (H-C=C-H, sp-C, LP = 0, linear geometry)

Q.26. Boron in BCl₃ has (NET 2017)

a) sp hybridization b) sp² hybridization c) sp³ hybridization d) no hybridization

Ans: b) sp² hybridization (See **Table 1.1**)

Q.27. A molecule in which sp² hybrid orbitals are used by the central atom in forming covalent bonds is

a.He₂ b.SO₂ c.PCl₅ d.N₂

Ans: b.SO₂ (See Table 1.2)

Q.28. The bond angle in NH₃ is close to

a. 90[°] b.180[°] c.109[°] d.120[°]

Ans: c.1090

Q.29. The octahedral shape is associated with

a.PF₅ b.SF₄ c.TeF₆ d.ClF₃

Ans: $c.TeF_6$ (LP of Te = 0, sp^3d^2 - octahedral) (See Table 1.2)

Q.30. The hybrid states of carbon in diamond, graphite and acetylene are respectively

a. sp^2 , sp, sp^3 b. sp, sp^2 , sp^3 c. sp^3 , sp^2 , sp d. sp^2 , sp^3 , sp

Ans: c.sp³, sp², sp (in diamond C - sp³, in graphite C - sp² and in acetylene C - sp)

Q.31. The AsF5 molecule is trigonal bipyramidal. The orbitals used by As for hybridization are

 $a.d_z^2,s,p_x,p_y,p_z$ $b.d_{x2-y2},s,p_x,p_y,p_z$ $c.\ s,p_x,p_y,p_z,d_{xz}$ d. None of these.

Ans: $a.d_z^2$, s, p_x , p_y , p_z (see in the text)

Q.32. The molecule with highest number of lone pairs and has a linear shape based on VSEPR theory is (NET 2011)

a.CO₂ $b.I_3^ c.NO_2$ $d.NO_2^+$

Ans: $b.I_3^-$ (Tri iodide ion I_3^- is linear geometry in which central I contain 3 lone pairs – see Fig. 1.7)

Q.33. Which of the following molecules/ions has a triangular pyramidal shape?

a.BF₃ b.NO₃⁻ c.H₃O⁺ d.CO₃²⁻

Ans: $c.H_3O^+$ (It is sp³ hybridized with 01 LP and 3 BPs around the oxygen atom similar to NH₃ shows triangular pyramidal shape – see Fig. 1.10)

Q.34. In piperidine, the hybrid state assumed by N is

a.sp $b.sp^2$ $c.sp^3$ $d.dsp^2$

Ans: $c.sp^3$ (In piperidine, N is surrounded by 01 LP and 3 BPs – sp^3 hybridized)

Q.35. Which of the following pairs contains isostructural species?

a.CH₃⁻ and CH₃⁺ b. NH₄⁺ and NH₃ c. SO_4^{2-} and BF₄⁻ d. NH₂⁻ and BeF₂

Ans: c. SO₄²⁻ and BF₄⁻ (both are in sp³ hybridized having tetrahedral geometry)

Q.36. The BCl₃ molecule is planar while NCl₃ is pyramidal because

a. BCl3 does not have the lone pair on B but NCl3 has one b. N atom is smaller than B

c. B-Cl bond is more polar than N-Cl bond d. N-Cl bond is more covalent than B-Cl bond

Ans: a. BCl₃ does not have the lone pair on B but NCl₃ has one (See Table 1.2)

Q.37.Among SF4, BF4, XeF4, and ICl4, the number of species having two lone pairs on the central atom

(NET 2011)

according to VSEPR theory is

a)2 b)3 c)4 d)0

Ans: a)2 (XeF₄ & ICl₄⁻ both have LP =2; see **Table 1.2**)

Q.38. Total number of lone pairs of electrons of Xe in XeOF4 is

a.0 b.1 c.2 d.3

Ans: $XeOF_4$ (LP = 1 & BPs = 6 around Xe in XeOF₄)

Q.39. The angles between covalent bonds is maximum in

a. CH_4 b. BF_3 c. PF_3 d. NH_3

Ans: b.BF₃ (sp² hybridized - highest bond angle, where, rest three are sp³ hybridized lower bond angle)

Q.40. The bond length between C-C bonds in sp² hybridized molecule is

a. 1.2Å b. 1.62Å c. 1.54Å d. 1.34Å

Ans: d. 1.34Å (C=C : sp²-sp², C-C bond length = 1.34Å)

Q.41. The hybridization of Xe in XeF2 is

 $a.sp^3$ $b.sp^2$ $c.sp^3d$ $d.sp^3d^2$

Ans: $c.sp^{3}d$ (BPs = 2 & LPs = 3 around Xe in XeF₂ - 5 T_{SLP} = 4 T_{SLP} + 1 additional T_{SLP} = sp³d hybridization)

Q.42. Which of the following will be octahedral ?

a.SF₆ b.BF₄ c.PCl₅ d.H₃BO₃

Ans: $a.SF_6(LP = 0, sp^3d^2 - regular geometry - octahedral)$

Q.43. The structure of CH₂=C=CH₂ is

a.Linear b.Planar c.Non-Planar d.None

Ans: b.Planar (since carbon uses only sp and sp² hybrid orbitals)

Q.44. Carbon atoms in benzene molecule are inclined at an angle of

a. 120⁰ b. 180⁰ c. 109⁰ d. 60⁰

Ans: a. 120° (in benzene, each carbon atom is sp² hybridized)

Q.45. In BrF₃ molecule, the lone pairs occupy equatorial positions to minimize

a.Lone pair - lone pair repulsion only b.Lone pair - bond pair repulsion only

c. Bond pair – bond pair repulsion only d. Lone pair – lone pair repulsion and lone pair – bond pair repulsion.

Ans: d. Lone pair – lone pair repulsion and lone pair – bond pair repulsion

Q.46. The shape of gaseous SnCl₂ is

a. Tetrahedral b.Linear c.Angular d.T-shaped

Ans: c. Angular (Sn is sp² hybridized and thus angular shaped)

Q.47. The shape of the molecule SF₂Cl₂ is

a.Trigonal bipyramidal b.Cube c.Octahedral d.Tetrahedral

Ans: a.Trigonal bipyramidal (in SF₂Cl₂, LP=1 & BPs = 4, hence, $5T_{SLP} = 4 T_{SLP} + 1$ additional $T_{SLP} = sp^3d$ hybridization)

Q.48. Which carbon is more electronegative ?

a.sp³-hybridized carbon b. sp-hybridized carbon c. sp²-hybridized carbon

d. Irrespective of the hybrid state

Ans: b. sp-hybridized carbon (% s = 50%)

Q.49. The shape of O_2F_2 is similar to that of

 $a.C_2F_2 \qquad b.H_2O_2 \qquad c.H_2F_2 \quad d.C_2H_2$

Ans: b.H₂O₂

Q.50.The most efficient overlapping is

a.sp²-sp² b.s-s c.sp³-sp³ d.sp-sp

Ans: c.sp³-sp³ (Greater the p-character, greater is the ability to overlap)

Q.51. In. NO₃⁻ ion, number of bond pairs and lone pairs of electrons are respectively

a.2,2 b.3,1 c.1,3 d.5,8

Ans: d.4,8 (NO₃⁻ be the conjugate base of HNO₃ in which BPs = 5 and LPs of O = 8)

Q.52. The shape of ClO₃⁻ is

a. Triangular pyramidal b. Tetrahedral c.Angular d.Linear

Ans: b. Tetrahedral (In $ClO_3^- LP = 0$, sp^3 hybridization state)

Q.53. IF₅ has the following hybridization

a. sp^3d^2 b. sp^3d c. sp^3d^3 d. None of these

Ans: a. sp^3d^2 [LP = 1 & BPs = 5, hence, 6 T_{SLP} = 4 T_{SLP} + 2 additional T_{SLP} = sp^3d^2 hybridization)]

Q.54. The correct order of bond angle is

 $a.H_2O>NH_3>CH_4>CO_2 \ b.\ H_2O<NH_3<CO_2<CH_4 \ c.\ H_2O<NH_3>CO_2>CH_4 \ d.\ CO_2>CH_4>NH_3>H_2O$

Ans: d. $CO_2 > CH_4 > NH_3 > H_2O$ (In $CO_2 LP = 0$, linear, sp; in $CH_4 LP = 0$, tetrahedral, sp³; in NH_3 , LP = 1, sp³ and in H_2O , LP = 2, sp³)

Q.55. In OF₂, number of bond pairs and lone pairs of electrons are respectively

a.2,6 b.2,8 c.2.10 d.2.9

Ans: b.2,8 (In F-O-F, each F has 3 LPs and O has 2 LPs . Here, BPs = 2)

Q.56. Which of the following bonds requires the largest amount of bond energy to dissociate into corresponding atoms?

a. H-H bond in H_2 b. C-H bond in CH_4 c. N=N bond in N_2 d. O=O bond in O_2

Ans: c. $N \equiv N$ bond in N_2 (B.O. is directly proportional to the bond dissociation energy, B.O. of N_2 is 3.0, greater the multiplicity of the bond, more is the bond strength and hence more will be the bond dissociation energy)

Q.57. Beryllium atom in BeF2 is

a. sp³ hybridized b. sp² hybridized c. sp hybridized d. Unhybridized Ans: c. sp hybridized [In BeF₂, Be has LP = 0 and σ bonds = 2, (P_{Hyb}) = (T_{SLP}) - 1 = 2 - 1 = 1 (sp)]

Q.58. Amongst the following the molecule that is linear is

a.ICl b.NO₂ c.SO₂ d.ClO₂

Ans: a.ICl [In ICl, LP of each halogen = 3, σ bond = 1, (P_{Hyb}) = (T_{SLP}) – 1= 4 - 1 = 3 (sp³), linear]

Q.59. Amongst the following molecules the one with the largest distance between the two adjacent carbon atoms is

a. Ethane b. Ethene c. Ethyne d. Benzene

Ans: a. Ethane (sp³, Lower the multiplicity of the bond, higher is the bond length)

Q.60. The correct sequence of the decrease in the bond angles of the following molecules is

a. $NH_3 > PH_3 > AsH_3 > SbH_3$ b. $NH_3 > AsH_3 > PH_3 > SbH_3$ c. $SbH_3 > AsH_3 > PH_3 > NH_3$

d. $PH_3 > NH_3 > AsH_3 > SbH_3$

Ans: a. $NH_3 > PH_3 > AsH_3 > SbH_3$ (Under the same repulsive force, bond angle is directly proportional to the electronegativity of the central atom when peripheral atoms are same, electronegativity order is N>P>As>Sb)

Q.61. The compound in which C uses its sp³ hybrid orbitals for bond formation is

a. HCOOH b. (H₂N)₂CO c. HCHO d. CH₃CHO

Ans: d. CH₃CHO (CH₃ group in CH₃CHO is in sp³ hybridized)

Q.62. The correct order of increasing C-O bond length of CO, CO3²⁻, CO2 is

a. $CO_3^{2-} < CO_2 < CO$ b. $CO_2 < CO_3^{2-} < CO$ c. $CO < CO_3^{2-} < CO_2$ d. $CO < CO_2 < CO_3^{2-}$

Ans: d. $CO < CO_2 < CO_3^{2-}$ [Resonance possible in CO_3^{2-} , O = C = O, $C \equiv O$]

Q.63. Among the following, the pair in which the two species are not isostructural is

a.PF₆⁻ and SF₆ b. SiF₄ and SF₄ c.XeF₂ and BrCl d. BH₄⁻ and NH₄⁺

Ans: b. SiF₄ and SF₄ (SiF₄, tetrahedral, sp³ and SF₄, see-saw, sp³d) (see Table 1.2)

Q.64. The number of σ and π bonds in pent-4-ene-1-yne is

a.3, 10 b.9, 4 c.4, 9 d.10, 3

Ans: d.10,3 (H=C-CH₂-CH=CH₂, all single bonds are σ bonds, in double bond $1\sigma \& 1\pi$, in triple bonds $1\sigma \& 2\pi$)

Q.65. Lone pair of electrons is present in the central atom of (STGT 2018) (a) CCl_4 (b) BF_3 (c) NH_3 (d) None of the above Ans: (c) NH_3 (for N, LP =1, BPs=3) Q.66. C—C bond length in ethane molecule is (STGT 2018) (a) 1.20 Å (b) 1.54 Å (c) 1.34 Å (d) 1.39 Å Ans: (b) 1.54 Å (in ethane, C-C: sp³-sp³, P_{Hyb} = 3+3 = 6, C-C bond length = 1.54Å) Q.67.C—C—C bond angle in diamond crystal is (STGT 2018) (a) $109^{\circ}28'$ (b) $107^{\circ}28'$ (c) 120° (d) None of the above Ans: (a) $109^{\circ}28'$ (in diamond C - sp³ & in graphite C - sp² see Table 1.2) Q.68. In crystalline graphite, C—C bond length is (STGT 2017) (a) 1.54 Å (b) 1.34 Å (c) 1.42 Å (d) 1.62 Å Ans: (b) 1.34 Å (in graphite, C-C : sp²-sp², P_{Hyb} = 2+2 = 4, C-C bond length = 1.34 Å) Q.69.What is the C-C bond length (in angstrom) in diamond? (STGT 2016) (c) 1·54 (d) 3.35 (a) 5·2 (b) 2·0 Ans: (c) 1.54 (in diamond, C-C : sp³-sp³, P_{Hyb} = 3+3 = 6, C-C bond length = 1.54 Å) Q.70. The ratio of σ and π bonds in naphthalene is (STGT 2016) (a)11:5 (b) 5:11 (c) 8:5 (d)19:5 Ans: (d)19:5 (in naphthalene, there is 19σ and 5π bonds) Q.71. Among ClO₃^{-,} XeO₃ and SO₃, species with pyramidal shape is/are? (NET 2017) a) ClO₃⁻ and XeO₃ b) XeO₃ and SO₃ c) ClO_3^- and SO₃ d) SO₃

Ans: a) ClO_3^- and XeO_3 (see **Table 1.2**)

Q.72. The correct order of the bond dissociation energies for the indicated C-H bond in following compounds is (NET 2016)

 $a)C>B>A \qquad b)A>B>C \qquad c)A>C>B \qquad d)C>A>B$

Ans: d) C > A > B [The power of the hybridization state (P_{Hyb}) of hydrogen bonded carbon atom is directly proportional to the bond length and bond length is inversely proportional to the bond dissociation energies; in A :

sp²-H, $P_{Hyb} = 2$, C-H bond length = 1.10Å; in B : sp³-H, $P_{Hyb} = 3$, C-H bond length = 1.11Å; and in C : sp-H, $P_{Hyb} = 1$, C-H bond length = 1.08Å]. Q.73. The correct shape of [TeF₅]⁻ ion on the basis of VSEPR theory is (NET 2016)

a) Trigonal bipyramidal b) Square pyramidal c) Pentagonal planar d) See-saw Ans: b) Square pyramidal (see **Table 1.2**)

Conclusion

It may be expected that these four (04) times economic innovative methods would go a long way to help to the students of chemistry at Undergraduate, Senior Undergraduate and Post-Graduate level, who would choose the chemistry as their career. Experiments, *in vitro*, on 100 students, showed that by using these mnemonics based teaching methodologies students can save up to 3-5 minutes' time in the examination hall.

Contributor:

Dr. Arijit Das, Ph.D., MACS, SFICS, MISC, MIAFS (India), Assistant Professor, Department of Chemistry, **Bir Bikram Memorial College, Agartala, Tripura(W)**, Tripura, India, Pin-799004. URL: <u>www.arijitchemistryworld.com</u>.