Algebraic identities...

By Rashmi Kathuria...

Activity 2

- Aim : To prove the algebraic identity
$(a-b)^{3}=a^{3}-3 a^{2} b+3 a b^{2}-b^{3}$ using unit cubes.

Material required: Unit Cubes.

Start Working..

Take any suitable value for a and b.

Let $a=3$ and $b=1$

Step 1. To represent $(a-b)^{3}$ make a cube of dimension (a-b) $\times(a-b) \times(a-b)$ i.e. $2 \times 2 \times 2$ cubic units.

Step 2. To represent (a) ${ }^{3}$ make a cube of dimension $a x a x a$ i.e. $3 \times 3 \times 3$ cubic units.

Step 3. To represent $3 \mathrm{ab}^{2}$ make 3 cuboids of dimension $a \mathbf{x b x b}$ i.e. $3 \times 1 \times 1$ cubic units.

Step 4. To represent $a^{3}+3 a b^{2}$, join the cube and the cuboids formed in steps 2 and 3.

Step 5. To represent $a^{3}+3 a b^{2}-3 a^{2} b$ extract from the shape formed in the previous step 3 cuboids of dimension $3 \times 3 \times 1$.

> Step 6. To represent $a^{3}+3 a b^{2}-3 a^{2} b-b^{3}$ extract from the shape formed in the previous step 1 cube of dimension $1 \times 1 \times 1$.

Step 7. Arrange the unit cubes left to make a cube of dimension $2 \times 2 \times 2$ cubic units.

Observe the following

- The number of unit cubes in $a^{3}=\ldots 27 \ldots$.
- The number of unit cubes in $3 a b^{2}=\ldots 9 \ldots \ldots$
- The number of unit cubes in $3 a^{2} b=\ldots 27 \ldots .$.
- The number of unit cubes in $b^{3}=\ldots 1 \ldots \ldots$
- The number of unit cubes in

$$
a^{3}-3 a^{2} b+3 a b^{2}-b^{3}=\ldots 8 \ldots .
$$

- The number of unit cubes in $(a-b)^{3}=\ldots 8 \ldots$

Learning outcome

It is observed that the number of unit cubes in (a-b) ${ }^{3}$ is equal to the number of unit cubes
in $a^{3}-3 a^{2} b+3 a b^{2}-b^{3}$.

