Algebraic identities... By Rashmi Kathuria...

Activity 2

 Aim : To prove the algebraic identity (a-b)³ = a³ - 3a²b+3ab²-b³ using unit cubes.

Material required : Unit Cubes.

Start Working..

Take any suitable value for a and b. Let a=3 and b=1

Step 1. To represent (a-b)³ make a cube of dimension (a-b) x (a-b) x (a-b) i.e. 2x2x2 cubic units.

Step 2. To represent (a)³ make a cube of dimension a x a x a i.e. 3x3x3 cubic units.

Step 3. To represent 3ab² make 3 cuboids of dimension a x b x b i.e. 3x1x1 cubic units.

Step 4. To represent $a^3 + 3ab^2$, join the cube and the cuboids formed in steps 2 and 3.

Step 5. To represent a³ + 3ab²- 3a²b extract from the shape formed in the previous step 3 cuboids of dimension 3x3x1.

Step 6. To represent a³ + 3ab²- 3a²b-b³ extract from the shape formed in the previous step 1 cube of dimension 1x1x1.

Step 7. Arrange the unit cubes left to make a cube of dimension 2x2x2 cubic units.

Observe the following

- The number of unit cubes in $a^3 = ...27....$
- The number of unit cubes in $3ab^2 = ...9$
- The number of unit cubes in 3a²b=...27.....
- The number of unit cubes in b³ =...1.....
- The number of unit cubes in

 $a^3 - 3a^2b + 3ab^2 - b^3 = ...8....$

• The number of unit cubes in $(a-b)^3 = ...8...$

Learning outcome

It is observed that the number of unit cubes in (a-b)³ is equal to the number of unit cubes in a³ -3a²b+3ab²-b³.