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Abstract. In this work, we introduce and investigate an interesting subclass Xt(γ) of an-
alytic and close-to-convex functions in the open unit disk U. For functions belonging to the
class Xt(γ), we drive several properties including (for example) the coefficient estimates,
distortion theorems, covering theorems and radius of convexity.

1. Introduction

Let A denote the class of functions of the form

(1.1) f(z) = z +

∞∑
n=2

anz
n,

which are analytic in the open unit disk U = {z : z ∈ C and |z| < 1}. Let S,S∗ and K be the
usual classes of function which are also univalent, starlike and convex, respectively. We also
denote by S∗(γ) the class of starlike function of order γ, where 0 ≤ γ < 1.

Definition 1.1. If f and g are two analytic functions in U, then f is said to be subordinate
to g, and write f(z) ≺ g(z), if there exists a function w analytic in U with w(0) = 0, and
|w(z)| < 1 for all z ∈ U, such that f(z) = g(w(z)), z ∈ U. Furthermore, if the function g is
univalent in U, then f(z) ≺ g(z) if and only if f(0) = g(0) and f(U) ⊂ g(U) in U.

Cho and Zhou [2] introduced following subclass Ks of analytic function, which indeed a
subclass of close-to-convex functions.

Definition 1.2. A function f ∈ A is said to be in the class Ks, if there exist a function
g ∈ S∗

(
1
2

)
, such that

(1.2) <
(
− z2f ′(z)

g(z)g(−z)

)
> 0, z ∈ U.

Recently, Knwalczyk and Leś-Bomba [3] extended Definition 1.2, by introducing the fol-
lowing subclass of analytic functions.

Definition 1.3. A function f ∈ A is said to be in the class Ks(γ), 0 ≤ γ < 1, if there exist
a function g ∈ S∗

(
1
2

)
, such that

(1.3) <
(
− z2f ′(z)

g(z)g(−z)

)
> γ, z ∈ U.

Motivated by above defined function classes, we introduce the following subclass of analytic
functions.
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Definition 1.4. A function f ∈ A is said to be in the class Xt(γ) (|t| ≤ 1, t 6= 0, 0 ≤ γ < 1),
if there exist a function g ∈ S∗

(
1
2

)
, such that

(1.4) <
(
tz2f ′(z)

g(z)g(tz)

)
> γ, z ∈ U.

In terms of subordination (1.4) can be written as

(1.5)
tz2f ′(z)

g(z)g(tz)
≺ 1 + (1− 2γ)z

1− z
, z ∈ U.

By simple calculation we see that inequality (1.5) is equivalent to

(1.6)

∣∣∣∣ tz2f ′(z)

g(z)g(tz)
− 1

∣∣∣∣ < ∣∣∣∣ tz2f ′(z)

g(z)g(tz)
+ 1− 2γ

∣∣∣∣
We see that

X−1(γ) = Ks(γ) and X−1(0) = Ks.
We now present an example of functions belonging to this class.

Example 1.1. The function

(1.7) f1(z) =
2γ − 1− t
(t− 1)2

ln
1− tz
1− z

− 2(1− 2γ)z

(1− t)(1− z)
, z ∈ U.

belongs to the class Xt(γ). Indeed, f1 is analytic in U and f1(0) = 0. Moreover,

f ′1(z) =
1 + (1− 2γ)z

(1− tz)(1− z)2
, z ∈ U.

If we put

(1.8) g1(z) =
z

1− z
, z ∈ U,

then g1 ∈ S∗(1
2) and

<
(
tz2f ′(z)

g(z)g(tz)

)
= <

(
1 + (1− 2γ)z

1− z

)
> γ, z ∈ U.

This means that f1 ∈ Xt(γ) and is generated by g1.

Cho and Zhou [2] and Knwalczyk and Leś-Bomba [3], have obtained properties for the
function classes Ks and Ks(γ), respectively. Moreover, some other interesting subclasses of A
related to the function classes Ks and Ks(γ) were considered in [4, 5]. In the present paper, we
obtained coefficient estimates, distortion theorems, covering theorems and radius of convexity
of the function class defined by (1.4).

2. Coefficient Inequalities

We first prove the following result.

Theorem 2.1. Let g(z) ∈ S∗
(

1
2

)
and given by

(2.1) g(z) = z +

∞∑
n=2

bnz
n, z ∈ U,
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If we put

(2.2) F (z) =
g(z) g(tz)

tz
= z +

∞∑
n=2

cnz
n, z ∈ U,

then

(2.3) cn = bn + b2bn−1t+ b3bn−2t
2 + ...+ bn−1b2t

n−2 + bnt
n−1,

and F (z) ∈ S∗.

Proof. Result (2.2) can be found easily. Also |tz| ≤ |z| < 1, then from the definitions of
starlike function, we have

<
(
zg′(z)

g(z)

)
>

1

2
and <

(
tz g′(tz)

g(tz)

)
>

1

2
.

Therefore

<
(
zF ′(z)

F (z)

)
= <

(
zg′(z)

g(z)

)
+ <

(
tz g′(tz)

g(tz)

)
− 1

>
1

2
+

1

2
− 1 = 0.

This proves the Theorem 2.1. �

Remark 2.1. From the definition of the class Xt(γ) and Theorem 2.1, we have

<
(
zf ′(z)

F (z)

)
> γ (0 ≤ γ < 1; z ∈ U),

thus

Xt(γ) ⊂ Ks(γ) ⊂ Ks ⊂ S.

Theorem 2.2. Let g(z) ∈ S∗
(

1
2

)
be a function given by (2.1)and 0 ≤ γ < 1

If an analytic function f in U defined by (1.1) satisfies the inequality

(2.4)
∞∑
n=2

2n |an|+ (|1− 2γ|+ 1)
∞∑
n=2

|cn| ≤ 2(1− γ)

where for n = 2,3,4 ......, the coefficient of cn are given by (2.3), then f ∈ Xt(γ) and it is
generated by g. In particular if

∞∑
n=2

n |an| ≤ 1− γ

Proof. We set for f given by (1.1)and g defined by (2.1)

A =

∣∣∣∣zf ′(z)− g(z)g(tz)

tz

∣∣∣∣− ∣∣∣∣zf ′(z)− (1− 2γ)
g(z)g(tz)

tz

∣∣∣∣
(2.5) =

∣∣∣∣∣
n=∞∑
n=2

nanz
n −

n=∞∑
n=2

cnz
n

∣∣∣∣∣−
∣∣∣∣∣(2− γ)z +

∞∑
n=2

nanz
n + (1− 2γ)

n=∞∑
n=2

cnz
n

∣∣∣∣∣
hence for z ∈ U,we have the inequality
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A ≤
n=∞∑
n=2

n|an||z|n +

n=∞∑
n=2

|cn||z|n −

(
(2− 2γ) |z|n −

n=∞∑
n=2

n|an||z|n − |1− 2γ|
n=∞∑
n=2

|cn||z|n
)

= −(2− 2γ)|z|+
n=∞∑
n=2

2n|an||z|n + (|1− 2γ|+ 1)

n=∞∑
n=2

|cn||z|n

<

(
−(2− 2γ) +

n=∞∑
n=2

2n|an|+ (|1− 2γ|+ 1)
n=∞∑
n=2

|cn|

)
|z|

≤ 0
From the above calculation we obtain that A < 0. Thus by (2.5) we have∣∣∣∣zf ′(z)− g(z)g(tz)

tz

∣∣∣∣ < ∣∣∣∣zf ′(z) +
−(1− 2γ)g(z)g(tz)

tz

∣∣∣∣ z ∈ U

which is equivalent to inequality (1.6)and also to the inequality (1.4). Thusf ∈ Xt(γ)and
it complete the proof.

Theorem 2.3. Let 0 ≤ γ < 1. Suppose that an analytic function f given by (1.1) and g ∈ S∗(1
2)

given by (2.1) are such that condition (1.4) holds . Then for n = 2,3,...........we have

(2.6) n2|an|2 − 4|1− γ|2 ≤
(
|2γ − 1|2 − 1

) k=n∑
k=2

|ck|2

where cn is defined by (2.3). In particular , if g(z)= z, then

n|an| ≤ 2(1− γ)

Proof. Sincef ∈ Xt(γ), for some g ∈ S∗(1
2) the inequality (1.6) holds. From the lemma, which

was proved by Owa(sec[6]) with α = β = 1 , we have

zf ′(z)

g(z)
=

1 + (2γ − 1)zφ(z)

1 + zφ(z)
z ∈ U

where φ is an analytic function in U, |φ(z)| ≤ 1, for z ∈ U and g is given by (2.1). Then(
zf ′(z)− (2γ − 1)F (z)

)
zφ(z) = F (z)− zf ′(z)

Now if we put zφ(z) =
∑n=∞

n=1 vnz
n

we see that |zφ(z)| ≤ |z|, for z ∈ U. Thus

(2.7)

(
(2− 2γ)z +

n=∞∑
n=2

nanz
n − (2γ − 1)

n=∞∑
n=2

cnz
n

)
n=∞∑
n=1

vnz
n =

n=∞∑
n=2

anz
n −

n=∞∑
n=2

nanz
n

we compare co-efficients in (2.7). Hence we can write for n ≥ 2

(
(2− 2γ)z +

k=n−1∑
k=2

kakz
k − (2γ − 1)

k=n∑
k=2

ckz
k

)
zφ(z) =

k=n∑
k=2

ckz
k −

k=n∑
k=2

kakz
k +

k=∞∑
k=n+1

dkz
k

Then we square the modulus of both sides of the above inequality and the we integrate
along |z| = r < 1. After using the fact that |zφ(z)| ≤ |z| < 1, we obtain
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k=n∑
k=2

|ck|2r2k+

k=n∑
k=2

|kak|2r2k+

k=∞∑
k=n+1

|dk|2r2k < |2−2γ|2r2+

k=n−1∑
k=2

|kak|2r2k+|2γ−1|2
k=n∑
k=2

|ck|2r2k

Letting r → 1, wehave

k=n∑
k=2

|ck|2 +
k=n∑
k=2

|kak|2 ≤ |2− 2γ|2 +
k=n−1∑
k=2

|kak|2 + |2γ − 1|2
k=n∑
k=2

|ck|2

Hence

k2|ak|2 − 4(1− γ)2 ≤
(
|2γ − 1|2 − 1|

) k=n∑
k=2

|ck|2

Thus we have the inequality (2.6), which finishes the proof. �

Theorem 2.4. Let 0 ≤ γ < 1. If the function f ∈ Xt(γ), then

(2.8) |an| ≤
1

n

{
|cn|+ 2(1− γ)

(
1 +

n−1∑
k=2

|ck|

)}
, k ∈ N.

Proof. By setting

(2.9)
1

1− γ

(
zf ′(z)

F (z)
− γ
)

= h(z), z ∈ U,

or equivalently

(2.10) zf ′(z) = [1 + (1− γ)(h(z)− 1)]F (z),

we get

(2.11) h(z) = 1 + d1z + d2z
2 + · · · , z ∈ U,

where <(h(z)) > 0. Now using (2.2) and (2.10) in (2.11), we get

2a2 = (1− γ)d1 + c2

3a3 = (1− γ)(d2 + d1c2) + c3

4a4 = (1− γ)(d3 + d2c2 + d1c3) + c4

...

nan = (1− γ)(dn−1 + dn−2c2 + · · ·+ d1cn−1) + cn.

Since <(h(z)) > 0, then |dn| ≤ 2, n ∈ N. Using this property, we get

2|a2| ≤ |c2|+ 2(1− γ),

3|a3| ≤ |c3|+ 2(1− γ) {1 + |c2|}
and

4|a4| ≤ |c4|+ 2(1− γ) {1 + |c2|+ |c3|} ,
respectively. Using the principle of mathematical induction, we obtain (2.4). This completes
proof of Theorem 2.4 �

Corollary 2.1. Let 0 ≤ γ < 1. If the function f ∈ Xt(γ), then

(2.12) |an| ≤ 1 + (n− 1)(1− γ).
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Proof. From Theorem 1, we know that F (z) ∈ S∗, thus |cn| ≤ n. The assertion (2.12), can
now easily derived from Theorem 2. �

Remark 2.2. Setting t = −1 in (3

main3

), we find that

c2n = 0, n ∈ N,
c3 = 2b3 − b22, c5 = 2b5 − 2b2b4 + b23, c7 = 2b7 − 2b2b6 + 2b3b5 − b24, · · ·

thus

c2n−1 = B2n−1, n = 2, 3, · · · ,

where

B2n−1 = 2b2n−1 − 2b2b2n−2 + · · ·+ (−1)n2bn−1bn+1 + (−1)n+1b2n, n = 2, 3, · · · .

Therefore, setting t = −1 in Theorem 2.2 and using the known inequality [2, Theorem B]

|B2n−1| ≤ 1, n = 2, 3, · · · ,

we get the corresponding result due to Geo and Zhou [2].

Theorem 2.5. Let 0 ≤ γ < 1. If the function f ∈ A satisfies

(2.13)
∞∑
n=2

{|nan − cn|+ (1− γ)|cn|} ≤ 1− γ, z ∈ U,

then f(z) ∈ Xt(γ)

Proof. If f satisfies (1.2), then

(2.14)

∣∣∣∣ tz2f ′(z)

g(z) g(tz)
− 1

∣∣∣∣ < 1− γ, z ∈ U.

Evidently, since

tz2f ′(z)

g(z) g(tz)
− 1 =

z +
∑∞

n=2 n anz
n

z +
∑∞

n=2 cnz
n
− 1

=

∑∞
n=2(nan − cn)zn−1

1 +
∑∞

n=2 cnz
n−1

,

we see that ∣∣∣∣ tz2f ′(z)

g(z) g(tz)
− 1

∣∣∣∣ ≤ ∑∞
n=2 |nan − cn|

1−
∑∞

n=2 |cn|
.

Therefore, if f(z) satisfies (2.13), then we have (2.14). This completes the proof of Theorem
2.5 �
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3. Distortion and Covering Theorem

Theorem 3.1. Let f ∈ Xt(γ). Then the unit disk U is mapped by f(z) on a domain that

contain the disk |w(z)| < 1

4− γ
.

Proof. Suppose that f(z) ∈ Xt(γ), and let w0 be any complex number such that f(z) 6= w0

for z ∈ U. Then w0 6= 0 and

(3.1)
w0f(z)

w0 − f(z)
= z +

(
a2 +

1

w0

)
z2 + · · ·

is univalent in U. This leads to

(3.2)

∣∣∣∣a2 +
1

w0

∣∣∣∣ ≤ 2,

on the other hand, from Corollary 2.1, we know that

(3.3) |a2| ≤ 2− γ, 0 ≤ γ < 1.

combining (3.2) and (3.3), we deduce that

(3.4) |w0| ≥
1

|a2|+ 2
≥ 1

4− γ
.

This completes the proof of Theorem 3.1. �

Theorem 3.2. Let f ∈ Xt(γ), then we have

(3.5)
1− (1− 2γ)r

(1 + r)3
≤ |f ′(z)| ≤ 1 + (1− 2γ)r

(1− r)3
(|z| = r, 0 ≤ r < 1)

and

(3.6)

∫ r

0

1− (1− 2γ)τ

(1 + τ)3
dτ ≤ |f(z)| ≤

∫ r

0

1 + (1− 2γ)τ

(1− τ)3
dτ (|z| = r, 0 ≤ r < 1)

Proof. Suppose that f(z) ∈ Xt(γ). From the definition of subordination between analytic
functions, we deduce that

1− (1− 2γ)r

1 + r
≤ 1− (1− 2γ)|w(z)|

1 + |w(z)|
≤
∣∣∣∣ tz2f ′(z)

g(z)g(tz)

∣∣∣∣ =

∣∣∣∣zf ′(z)F (z)

∣∣∣∣
≤ 1− (1− 2γ)|w(z)|

1 + |w(z)|
≤ 1 + (1− 2γ)r

1− r
(|z| = r, 0 ≤ r < 1)(3.7)

where w is Schwarz function with w(0) = 0 and |w(z)| < 1, z ∈ U. Since

F (z) =
g(z)g(tz)

tz

is an starlike function, it is well known that [1]

(3.8)
r

(1 + r)2
≤ |F (z)| ≤ r

(1− r)2
(|z| = r, 0 ≤ r < 1).

Now it follows from (3.7) and (3.8), that

1− (1− 2γ)r

(1 + r)3
≤ |f ′(z)| ≤ 1 + (1− 2γ)r

(1− r)3
(|z| = r, 0 ≤ r < 1).
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Let z = reiθ (0 < r < 1). If L denotes that closed line segment in the complex ζ-plane from
ζ = 0 and ζ = z, then we have

f(z) =

∫
L
f ′(ζ)dζ =

∫ r

0
f ′(τeiθ)eiθdτ (|z| = r, 0 ≤ r < 1).

Thus by using upper estimate in (3.5), we have

|f(z)| =
∣∣∣∣∫ z

0
f ′(ζ)dζ

∣∣∣∣ ≤ ∫ r

0
|f ′(τeiθ)|dτ ≤

∫ r

0

1 + (1− 2γ)τ

(1− τ)3
dτ (|z| = r, 0 ≤ r < 1)),

which yields the right hand side of the inequality in (3.6). In order to prove the lower bound in
(3.6), it is sufficient to show that it holds true for z0 nearest to zero, where |z0| = r (0 < r < 1).
Moreover, we have

|f(z)| ≥ |f(z0)| (|z| = r, 0 ≤ r < 1).

Since f(z) is close-to-convex function in the open unit disk U, it is univalent in U. We deduce
that the original image of the closed line segment L0 in the complex ζ−plane from ζ = 0 and
ζ = f(z0) is a piece of arc Γ in the disk Ur, given by

Ur = {z : z ∈ C and |z| ≤ r (0 ≤ r < 1)}.

Since, in accordance with (3.5), we have

|f(z)| =
∫
f(Γ)
|dw| =

∫
Γ
|f ′(z)||dz| ≥

∫ r

0

1− (1− 2γ)τ

(1 + τ)3
dτ (|z| = r, 0 ≤ r < 1)).

This completes the proof of Theorem 3.2. �

4. Radius of Convexity

Theorem 4.1. Let f ∈ Xt(γ), then f(z) is convex in |z0| < r0 = 2−
√

3.

Proof. When f(z) ∈ Xt(γ), there exists g(z) ∈ S∗(1/2) such that (1.4) holds, then F (z)
defined by (2.2) is a starlike function, so from (1.4) we have

(4.1) zf ′(z) = F (z)p(z),

where p(0) = 1 and <(p(z)) > 0. From (4.1), we have

1 +
zf ′′(z)

f ′(z)
=
zF ′(z)

F (z)
+
zp′(z)

p(z)
,

so on using well know estimates [1], we have

<
{

1 +
zf ′′(z)

f ′(z)

}
= <

{
zF ′(z)

F (z)

}
+ <

{
zp′(z)

p(z)

}
≥ 1− r

1 + r
−
∣∣∣∣zp′(z)p(z)

∣∣∣∣
≥ 1− r

1 + r
− 2r

1− r2
=
r2 − 4r + 1

1− r2
.(4.2)

It is easily seen that, if r2 − 4r + 1 > 0, then <
{

1 + zf ′′(z)
f ′(z)

}
> 0. Let

(4.3) H(r) = r2 − 4r + 1,
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since H(0) = 1, H(1) = −2, and H ′(r) = 2r − 4 < 0, 0 ≤ r < 1, this shows that H(r)
is monotonically decreasing function and thus equation H(r) = r2 − 4r + 1 has a root r0 in
interval (0,1). On solving equation (4.3), we get r0 = 2−

√
3.

Thus when r < r0, <
{

1 + zf ′′(z)
f ′(z)

}
> 0, that is, f(z) is convex in |z| < r0. This completes

the proof of Theorem 4.1. �

5. Fekete-Szego Inequality

In this section we assume that the function φ(z) is an univalent analytic function with
positive real part that maps the unit disk U onto a starlike region which is symmetric with
respect to real axis and is normalized by φ(0) = 1, and φ′(0) > 0. In such case , the function
φ has an expression of the form φ(z) = 1 +B1z +B2z + .........., B1 > 0

Theorem 5.1. for a function f ∈ Xt(γ),the following sharp estimate holds:

|a3 − µa2
2| ≤

4

3
+max

{
2− 2γ

3
, |2γ

3
+ µ

γ2

3
|
}

(µ ∈ C)

Proof. Since the function f ∈ Xt(γ),there is a normalized analytic function g ∈ S∗
(

1
2

)
such

that
tz2f ′(z)

g(z)g(tz)
≺ φ(z)

By using the definition(1.1) we find a function w(z) analytic in U , normalized by w(0) = 0
satisfying |w(z)| < 1 and

(5.1)
tz2f ′(z)

g(z)g(tz)
= φ(w(z))

By writing w(z) = w1z + w2z
2 + .......... we see that

φ(w(z)) = 1− 2γw1z +
{

2(1− γ)w2 − 2γw2
1)
}
z2+................. (5.2)

Also by g(z) given by (2.1)

g(z)g(tz)

tz
= z + (b2 + tb2)z2 + (b3 + t2b3 + b22t)z

3 + .............

and therefore

tz

g(z)g(tz)
=

1

z
− (b2 + b2t)z − (b3 + b3t

2 + b22t)z
2 − ...........

Using this and the Taylor’s expansion forzf ′(z), we get

(5.3)
tz2f ′(z)

g(z)g(tz)
= 1 + 2a2z + (3a3 − b2 − b2t)z2 + .............

using (5.1),(5.2)and (5.3)we get

2a2 = −2γw1

3a3 − b2 − b2t = (2− 2γ)w2 − 2γw2
1

3a3 = (1 + t)b2 + (2− 2γ)w2 − 2γw2
1
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this shows that

a3 − µa2
2 =

1

3
(1 + t)b2 +

2− 2γ

3

{
w2 −

(
2γ + µγ2

2− 2γ

)}
By using the following estimate ([7,inequality 7,p-10)

|w2 − λw2
1| ≤ max {1, |λ|} , (λ ∈ C)

for an analytic function w with w(0) = 0 and |w(z)| < 1 which is sharp for the function
w(z) = z2 or w(z) = z, the desired result follows upon using the estimate that |1 + t| ≤ 2,
and |b2| ≤ 2.
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