
Gamma Distribution



Introduction
• The graph of any normal probability density 

function is the bell shaped and thus symmetric.

• There are many practical situations in which the variable 
of interest to the experimenter might have a skewed 
distribution.

• A family of p.d.f’s that yield a wide variety of skewed 
distribution shape is the gamma family.

• The gamma distribution derives its name from the well-
known gamma function, studied in many areas of 
mathematics. 



Definition: The gamma function is 
defined by
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After integration by parts, we obtain

which yields the recursion formula
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Repeated application of the recursion 
formula gives

When           , and n is a positive integer,
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However, by the definition

and hence
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Definition: The continuous random 
variable X has a gamma distribution, with 
parameters     and     , if its density 
function is given by 
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• The standard gamma distribution has 

• The mean and variance of the gamma 
distribution may be obtained by making 
use of the gamma function.

• For the mean we have
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• It can also be shown that               .  

• The special gamma distribution for          is 
called the exponential distribution.
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