Projectile Motion Notes

When objects move in two dimensions they often move at an _____

Example: For a triangle with a 90° angle, two 45° angles, and each of the legs measuring 1 meter, what is the length of the hypotenuse?

Answer: ____

In order to understand projectile motion you need to understand motion in the X direction (left and right) and the Y direction (up and down).

Then there are the equations. Don't let them overwhelm you, which equation you use depends on the information you are given.

Vertical Y-direction	Horizontal X-direction
$a_y = 9.8$; $m_{/s^2}$	$V_{xi} = V_{xf}$
$\alpha_y = \frac{V_{yf} - V_{yt}}{t}$	d_x = v_x †
$d_y = v_{ty}t + \frac{1}{2} \alpha t^2$	
$V_{\rm orf}^2 = V_{\rm orf}^2 + 2a_y d_y$	
$V_y = V_{y0} + a_y t$	

When solving a projectile motion problem you should draw a picture, include angles, distances, velocities, and any other information possible.

Example: Find the max height and range a cannonball reaches if shot at an angle of 35° with an initial velocity of 120 m/s.

Step 1: Sketch with information:

Y Direction	X Direction
Viy =	Vix =
Vfx =	ax =
ay =	dx =
dy =	† =
† =	

Step 2: Circle what you are trying to solve for.

Step 3: Fill in what you already know or can easily find.

Step 3: Use formulas to solve for unknown.