Halix092@gmail.com

Computer programming
· Computer Programming is defined as the process of creating computer software using a programming Language. Computer programs are written by Human individuals(Programmers)
· A computer program is a step by step set of instructions that a computer has to work through in a logical sequence in order to carry out a particular task. The computer executes these instructions (obeys the instructions) when told to do so by the user.
· Programming languages are the vocabulary and set of grammatical rules for instructing a computer to perform specific tasks. There are many different types of programming languages each having a unique set of keywords (words that it understands) and a special syntax (grammar) for organising program instructions.
· Syntax refers to the spelling and grammar of a programming language. Each program defines its own syntactical rules that control which words the computer understands, which combinations of words are meaningful, and what punctuation is necessary. Text-based programming languages are based on sequences of characters, while visual programming languages are based on the spatial layout and connections between symbols (which may be textual or graphical).

· There are many computer programming languages and so the programmer will have to decide which one to use for solving a particular problem. These languages must be learnt just as Swahili, English or French etc.
 Levels of programming languages
· Programming languages are classified into five major categories: machine languages (first generation languages), assembly languages (second generation languages), third generation languages, fourth generation languages, and natural languages. Machine and assembly languages are referred to as low level languages; third generation, fourth generation and natural languages are categorised as high level languages.
· A low level language is machine dependent; that is, it is written to run on one particular computer. A high level language is machine independent, which means the high level language code can run on many different types of computer.

· There are two types of low-level programming languages: Machine Language and Assembly Language.
· The machine language writes programs using the machine code of 1s and 0s, which is directly understood by the computer.

· The main problems with using machine code directly are that it is very easy to make a mistake, and very hard to find it once you realise the mistake has been made.
 Characteristics of 1GL
· Fastest to execute because it is already in the language that the computer can understand
· Difficult to interpret (requires the aid of a reference manual to interpret the meaning of each code)
· Easy to make mistakes in the sequence of 1s and 0s; replacing a 1 for a 0 can result in the wrong command/instruction being executed

· It is difficult to identify mistakes made
· Time-consuming and tedious to write
· Machine dependent
· Programming becomes more difficult as the complexity of the program
 Assembly language – Second Generation Language (2GL)
Assembly language is written using mnemonic codes (abbreviated English words) or short codes that suggest their meaning and are therefore easier to remember. These codes represent operations, addresses that relate to main memory, and storage registers of the computer. Typical codes might be: LDA, STO, ADD, NOP, etc.
 Characteristics of 2GL
· As with machine language, assembly language is machine dependent.

· Assembly language, being machine dependent, is faster and more efficient in the use of hardware than high-level programming languages.
· Assembly languages have to be translated into machine language by language translators known as assemblers for the processor to understand.

· Easier to write than machine language
· The code is not very easy to understand, hence the introduction of high level programming languages.
 High-level programming languages
High level programming language is defined as one that is machine independent and uses variables and objects, Boolean expressions, functions, loops, arrays, threads, locks which are similar to their meaning (abstraction).

High-level languages have evolved over the years and can be grouped into five categories: Third Generation Languages (3GL), Fourth Generation Languages (4GL), Object Oriented Programming Languages (OOP), Fifth Generation Languages (5GL) and Scripting Languages

These languages are problem oriented, so they are machine independent.
· Since high-level languages reflect the logic and procedures used in a human algorithm, the programmer is able to concentrate on developing task algorithms rather than on how the computer will carry out the instructions.
· The programmer must still specify a complete set of detailed instructions. The words and grammar of high-level languages are English-like and this makes the programs more readable and easy to write.
· High-level languages are machine independent (they can be used on different computer systems); since the syntaxes of high-level languages are standardised, the languages are portable.

· A high-level language is governed by a strict syntax (set of grammatical rules).

· They are easier to read, write, and maintain.

· They also permit faster development of large programs.

· Programs written in a high-level language must be translated into machine language by a compiler or interpreter.
 Characteristics of high-level languages

· They are machine independent hence portable
· They are user friendly and easy to learn
· High-level language programs are easy to debug
· They are more flexible hence they enhance the creativity of the programmer, increasing productivity
· They are executed much slower than low-level programming languages
· They have to be translated into machine code before execution; this is done by compilers and Assemblers.
· One instruction translates into several machine code instructions

 Assemblers and Compilers

· Assemblers and Compilers are programs that convert high level languages into machine code.

· A Compiler is a program that converts the entire source code (compiles it) into machine language at one time before the computer can run the program at a later time. While compiling the source code into machine code, it checks that the syntax is properly written by the programmer for the programmer to debug the program.

· The interpreters are programs that translates the high level program code one statement at a time, that is, it reads a code statement, converts it to one or more machine language instructions, and then executes the instruction before moving translating the next code statement in the program. If there is any error in the statement, the programmer can correct the error before the interpreter evaluates the next statement.

· Interpreters are slower than Compilers because interpreters convert a statement at a time and run it before moving to the next line.

 Object-Oriented programming (OOP)

· Object-oriented programming (OOP) is a programming language model organized around objects and data.

· In OOP, the programmer packages the data and the program procedures into a single unit called an object. The procedures in the object are called Operations(Methods or behavior), and the data elements are called attributes(Variables); this means that a part from looking at the data structure, the methods associated with that object used to modify the object’s attributed must be considered.

· A method is an operation or function which can modify an object’s behavior i.e. that changes an object by manipulating its variables, a function is a sequence of commands or programming code that returns a value (sends a result back). Think of it as "What method would you use to add two numbers together?"

· The concept of packaging methods and attributes into a single object is what is known as encapsulation(information hiding)

· And Object may be part of a larger category of objects called a Class; every object in a class share the similar methods and attributes as the original object. Each class can have one or lower levels called sub-classes, the higher level class is called a super class.

· Each subclass inherits the methods and attributes of the objects in its super-class. This concept of the lower levels inheriting methods and attributes of higher levels is called inheritance.

 Major high level programming languages used
· FORTRAN (FORmula TRAnslator)developed in the late 1950s developed to design scientific applications

· COBOL (Common Business Oriented Language) developed in early 1960s to develop business applications.

· RPG (Report Program generator) was developed in early 1960s to assist in generating reports and complex calculations.
· BASIC (Beginner’s All-purpose symbolic instruction code) developed in mid 1960 Basic versions include MS-BASIC, QBASIC, Small BASIC and visual basic.

· Pascal was developed in the late 1960s for the purpose of teaching structured programming concepts

· C developed in the early 1970s to write system software

· Ada was developed in the late 1970s originally developed to meet the needs of embedded computer systems

· C++ developed in the 1980s is an object-oriented language mainly to develop application software

· Note that in addition to the major languages discussed above, there are many other programming languages that have been developed such as JavaScript, and Python

 Language Translators
· Language translators are system programs that convert assembly language and high-level language into the machine language.
· The computer does not understand assembly languages or high-level languages. Computers work in machine code or machine language.
Object code
· Object code is a program code in machine-readable form (a source program that has been translated).
Assemblers
· The assembly-language program must be translated into machine code by a separate program called an assembler. The assembler program recognises the character strings that make up the symbolic names of the various machine operations, and substitutes the required machine code for each instruction.
Compilers
Compilers are language translators that translate high-level languages into machine code.
A compiler translates the entire program (source code) to machine code, and then the code is executed. The translated codes are known as object codes and are saved as a file on disk. The object code (machine code) stored on disk has an EXE file name extension. It is then loaded or linked (stored in memory) and executed
PAGE
3

