Two-Sample *t*-Test: Independent Samples

Chapter 14

Photos and False Memories

Research Question:

- Can old photos create or prevent false memories?
 (Lindsay, Hagen, Read, Wade, & Garry, 2004)
- 45 undergraduates asked to remember a childhood event that, unbeknownst to them, hadn't actually occurred.
 one group (n = 23) given photograph to help cue their memory
 second group (n = 22) not given photograph
- Participants rated the extent to which their memory experience resembled "reliving the event" on a scale from 1 to 7

(1=not at all, 7 = as if it were happening right now)

A 6 Step Program for Hypothesis Testing 1. State the research question 2. Choose a statistical test 3. Select alpha which determines the critical value for the region of rejection (e.g., t_{.05})

- 4. State your statistical hypotheses (as equations)
- 5. Collect data, and calculate t_{obt}
- Interpret results in terms of hypothesis Report results Explain in plain language

A 6 Step Program for Hypothesis Testing

- 1. State your research question
 - Can old photos influence false memories scores?
- 2. Choose a statistical test
 - comparing means from two groups
 - participants randomly assigned to different groups
 - independent sample *t*-Test

Photos and False Memories

- 3. Select alpha which determines the critical value $(t_{.05})$ for the region of rejection
 - $\alpha = .05$
 - For the independent two-sample *t*-Test
 - $df = (n_1 1) + (n_2 1)$
 - in other words, df = N 2
 - in this case, df = 45-2 = 43

 $- t_{.05} = +/- 2.021$ (from *t*-Tables)

Photos and False Memories

4. State your statistical hypotheses (as equations)

*H*₀:
$$\mu_1 = \mu_2$$

*H*₁: $\mu_1 \neq \mu_2$

When H_0 is true, both samples represent the same population

5. Collect data and calculate test statistic (t_{obt})

	Photo	Control
п	23	22
\overline{X}	3.22	2.00
s _x	1.575	1.341

$$t_{\rm obt} = \frac{\overline{X}_1 - \overline{X}_2}{s_{\overline{X}_1 - \overline{X}_2}}$$

Is the difference in means due to the photos or simply be due to chance variation?

- Sampling distribution of difference between means
 - distribution of all possible differences between two means
- <u>Standard error of the difference</u> between means – standard deviation of this sampling distribution

 $S_{\overline{X}_1 - \overline{X}_2}$

• These are rough guidelines:

Effect Size	d	Overlap
small	.2	85%
medium	.5	67%
large	.8	53%

Independent Samples *t*-Test and PASW

- Select from Menu: Analyze -> Compare Means -> Independent Samples T Test
- Select your dependent variable (e.g., scores) as *Test Variable* and independent variable (e.g., group) as *Grouping Variable*.
- Select "Define Groups"
- Enter "1" for Group 1 and "2" for Group 2
 Note: you would enter different labels if you had not named your groups 1 and 2
- Click Continue; Click OK

- People that take Lipitor have reduced levels ٠ of cholesterol.
- If researchers find a difference between groups, why do the two groups differ?
 - 1. random differences between individuals in the groups.
 - e.g., more healthy people in one group
 - 2. differences between levels of the independent variable
 - e.g., Lipitor is effective in reducing cholesterol level