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Abstract

In recent years, the non-canonical lagrangian have been extensively studied in the context of

inflationary cosmological models. In this work, the non-canonical Lagrangian with φ6 potential

have been discussed. We have obtained the periodic and solitary wave solutions of non-canonical

Lagrangian with φ6 potential using the auxiliary equation method. The solution is obtained in

terms of elliptic and hyperbolic functions. In the theory of phase transition, the φ6 potential,

V (φ) = a
2φ

2 − b
4φ

4 + c
6φ

6, describes a first order phase transition. This potential is also called as

Landau free energy density. We have also included a spatial gradient term (also called as Ginzburg

term) in the non-canonical Lagrangian density. The solutions obtained here may provide some new

direction in the theory of phase transition, field theory and related phenomena.
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I. INTRODUCTION

In recent years, non canonical Lagrangian have been used in various cosmological models [1].

The non-canonical Lagrangian is the Lagrangian with non-quadratic kinetic energy term.

The mathematical form of canonical Lagrangian density is given by

L =
1

2
(gµν∂µφ∂νφ)− V (φ),

where V (φ) is the potential energy and µ = 0, 1. Here µ = 0 corresponds to time coordinate

t, and µ = 1 corresponds to space coordinate x. Furthermore, the metric tensor gµν is

diagonal, with g00 = −g11 = 1. Also, we are using natural units in which c = 1 and action

is dimensionless. In this framework, the canonical Lagrangian density can be written as

L =
1

2

[(
∂φ

∂t

)2

−
(
∂φ

∂x

)2
]
− V (φ)

Note that the kinetic term ∂φ
∂t

is quadratic. On the other hand, the mathematical form of

non-canonical Lagrangian density is written as

L = k

(
1

2
∂µφ∂

µφ

)n
− V (φ), (1)

where V (φ) is the potential, n is an integer and k is a constant. For n = 1, we get the

canonical Lagrangian of the field theory. Also, note that the Eq. (1) is Lorentz invariant for

any value of n. The non canonical Lagrangian density have been studied in the inflationary

cosmological models [1]. In Ref. [1], it has been shown that a non-canonical Lagrangian

density (Lagrangian with non-quadratic kinetic term) without the potential energy can

derive an inflationary evolution and in [4], it has been shown that the non-canonical scalars

can significantly improve the viability of inflationary models. The solitary wave solution of

Eq. (1) for certain class of potential have been obtained in [5]. The purpose of this work is

to obtain the exact solution of Eq. (1) in 1+1 dimension for n = 2, and for the potential

V (φ) =
a

2
φ2 − b

4
φ4 +

c

6
φ6, (2)

where a, b and c are real constants. This potential is useful in certain crystalline phase

transition [2]. This potential (also known as Landau free energy density) have been used to

study the formation of static domain walls [2, 3] in the theory of continuous phase transition.

For n = 2, Eq. (1) takes the form

L =
k

4
(∂µφ∂

µφ)2 −
(
a

2
φ2 − b

4
φ4 +

c

6
φ6

)
. (3)
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Simplifying Eq. (3), we obtain

L =
k

4

[(
∂φ

∂t

)2

−
(
∂φ

∂x

)2
]2
−
(
a

2
φ2 − b

4
φ4 +

c

6
φ6

)
. (4)

Note that the kinetic term is non-quadratic. The corresponding equation of motion is given

by

∂µ

(
∂L

∂ (∂µφ)

)
− ∂L
∂φ

= 0

Thus the equation of motion which follows from Eq. (4) is given by

3k

(
∂φ

∂t

)2(
∂2φ

∂t2

)
− k

(
∂2φ

∂t2

)(
∂φ

∂x

)2

+ 3k

(
∂2φ

∂x2

)(
∂φ

∂x

)2

−

k

(
∂φ

∂t

)2(
∂2φ

∂x2

)
+
∂V

∂φ
= 0

From here one can see that the equation of motion remains second order [4]. Since Eq. (3)

is Lorentz invariant, we can solve this equation for time independent case. Note that this is

true only for wave solution. Thus the static equation of motion which follow from Eq. (4) is

3k

(
∂φ

∂x

)2(
∂2φ

∂x2

)
+ aφ− bφ3 + cφ5 = 0. (5)

Now, to find the exact solution of Eq. (5), we employ the method of auxiliary equation

method [6,7]. According to this method, we make an ansatz for the solution of Eq. (5) as

φ(x) =
l∑

i=0

aiz
i(x), (6)

where ai (i = 0, 1, 2, ..., l) are all real constants to be determined, l is a positive integer which

can be determined by balancing the highest order derivative terms with the highest power

nonlinear terms in Eq. (5) and z(x) satisfies the following new auxiliary ordinary differential

equation, namely (
dz

dx

)2

= Az4(x) +Bz3(x) + Cz2(x) +D, (7)

in which A, B, C and D are real constants. Using the balancing procedure in Eq. (5) one

obtains l = 2, which in turn leads to the choice of φ(x) in Eq. (6) as

φ(x) = a0 + a1z(x) + a2z
2(x). (8)
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Substituting (8) along with (7) into Eq. (5) and then setting the coefficients of zj(x) (j =

0, 1, ...., 10), to zero in the resultant expression, one obtains a set of algebraic equations

involving a0, a1, a2, a, b, c, A, B, C and D as

6ka21a2D
2 + aa0 − ba30 + ca50 = 0, (9)

3ka31CD + 24ka1a
2
2D

2 − 3ba20a1 + 5ca40a1 + aa1 = 0, (10)

9

2
kBDa31 + 30kCDa21a2 + 24kD2a32 + aa2 − 3ba0a

2
1 −

3ba20a2 + 10ca30a
2
1 + 5ca40a2 = 0, (11)

3kC2a31 + 6kADa31 + 39kBDa21a2 + 84kCDa1a
2
2 − ba31 −

6ba0a1a2 + 10ca20a
3
1 + 20ca30a1a2 = 0, (12)

15

2
kBCa31 + 24ka21a2C

2 + 48kADa21a2 + 102kBDa1a
2
2 + 72kCDa32 −

3ba21a2 − 3ba0a
2
2 + 5ca0a

4
1 + 30ca20a

2
1a2 + 10ca30a

2
2 = 0, (13)

9

2
kB2a31 + 9kACa31 + 57kBCa21a2 + 60kC2a1a

2
2 + 120kADa1a

2
2 +

84kBDa32 − 3ba1a
2
2 + 20ca0a

3
1a2 + 30ca20a1a

2
2 + ca51 = 0, (14)

21

2
kABa31 + 33kB2a21a2 + 66kACa21a2 + 138kBCa1a

2
2 + 48kC2a32 +

96kADa32 − ba32 + 5ca41a2 + 30ca0a
2
1a

2
2 + 10ca20a

3
2 = 0, (15)

6kA2a31 + 75kABa21a2 + 156kACa1a
2
2 + 78kB2a1a

2
2 + 108kBCa32 +

10ca31a
2
2 + 20ca0a1a

3
2 = 0, (16)

42ka21a2A
2 + 174kABa1a

2
2 + 60kB2a32 + 120kACa32 + 10ca21a

3
2 + 5ca0a

4
2 = 0, (17)

96ka1a
2
2A

2 + 132kABa32 + 5ca1a
4
2 = 0, (18)

72ka32A
2 + ca52 = 0. (19)

Now, we shall solve set of Eqs. (19) for various choices of constants A, B, C and D

appearing in Eq. (7).

Case (1a): If we take D = 0 and B = 0 in the set of Eqs. (9-19), then one ob-

tains the trivial solution, i.e., φ(x, t) = 0 for all x and t. Next we discuss the special cases

of Eq. (7) when B = 0 and D 6= 0. Let us solve Eq. (19) to obtain

a2 = ±
√
−72k

c
A (20)
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Next we solve Eq. (18) to obtain a1 as

a1 =
1

2

B

A
a2 (21)

For B=0, we obtain a1 = 0. Next we solve Eq. (17) for a0 to obtain

a0 = ∓
√
−8k

c
C (22)

Solving Eq. (16), we obtain trivial solution, i.e., 0=0. Then solving Eq. (15) to obtain

b = k(96AD − 32C2) (23)

Then Eq. (14) yields 0=0 and from Eq. (13), we obtain

72kCDa2 − 3ba0 − 80kC2a0 = 0 (24)

Equation (12) yields 0=0 and from Eq. (11), we obtain

ac = 1728k2A2D2 + 448k2C4 − 2304k2ADC2 (25)

Next, Eq. (10) yields 0=0 and from Eq. (9), we obtain

a = ba20 + 8kC2a20 (26)

Let us now simplify Eq. (24) using Eqs. (21), (22) and (23). Solving these set of equations,

we obtain

C2 =
2016

64
AD = 31.5 AD

Using this value of C2 in Eq. (23), we obtain

b = −912 kAD (27)

From Eq. (26), we obtain the constraining relation among the parameters as

ac = 166320 k2A2D2 (28)

and from Eq. (25), we obtain

ac = 373680 k2A2D2

Thus we get two values of ac and hence the set of Eqs. (9)-(19) are inconsistent. Next, we

add a gradient term in the Lagrangian. Thus we write Eq. (3) as

L =
k

4
(∂µφ ∂

µφ)2 + ψ

(
∂φ

∂x

)2

−
(
a

2
φ2 − b

4
φ4 +

c

6
φ6

)
(29)
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The presence of second term in this equation violates the Lorentz invariance of the equation.

Note that the conventional Lagrangian with gradient term have been studied in the context

of field theory and cosmology. In crystallography, the coefficient ψ is known as Ginzburg

term [2]. The solution of the Eq. (29) without the kinetic term has been obtained in Ref.

[2]. The above Lagrangian density in the presence of Ginzburg term can be written as

L =
k

4

[(
∂φ

∂t

)4

+

(
∂φ

∂x

)4

− 2

(
∂φ

∂t

)2(
∂φ

∂x

)2
]

+ ψ

(
∂φ

∂x

)2

−
(
a

2
φ2 − b

4
φ4 +

c

6
φ6

)
The corresponding equation of motion is given by

3k

(
∂φ

∂t

)2(
∂2φ

∂t2

)
− k

(
∂φ

∂x

)2(
∂2φ

∂t2

)
+ 3k

(
∂φ

∂x

)2(
∂2φ

∂x2

)
−

k

(
∂φ

∂t

)2(
∂2φ

∂x2

)
+ 2ψ

(
∂2φ

∂x2

)
+ aφ− bφ3 + cφ5 = 0 (30)

Again, we solve Eq. (29) using auxiliary equation method. We take Eq. (6) as an ansatz

for the solution of Eq. (29). Using the balancing procedure in Eq. (29) one obtains l = 2,

which in turn leads to the choice of φ(x) in Eq. (6) as Eq. (8). Since the Lagrangian density

(29) is not Lorentz invariant, this time we have to take into account the time derivative in

equation of motion (30). Let us first make a change of variable, by defining ξ = x − wt.

Using this transformation into Eq. (30), we get

k(3w4φ′2φ′′ − w2φ′2φ′′ + 3φ′2φ′′ − w2φ′2φ′′) + 2ψφ′′ + aφ− bφ3 + cφ5 = 0

which can be written as

k(3w4φ′2φ′′ − 2w2φ′2φ′′ + 3φ′2φ′′) + 2ψφ′′ + aφ− bφ3 + cφ5 = 0

or,

kφ′2φ′′(3w4 − 2w2 + 3) + 2ψφ′′ + aφ− bφ3 + cφ5 = 0

where

φ′ =
∂φ

∂ξ
and φ′′ =

∂2φ

∂ξ2

Again, Substituting (8) along with (7) into Eq. (30) and then setting the coefficients of

zj(x)(j = 0, 1, . . . , 10), to zero in the resultant expression, one obtains a set of algebraic
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equations (similar to Eqs. (9)-(19)) involving a0, a1, a2, a, b, c, A, B, C and D as

(3w4 − 2w2 + 3)(2ka21a2D
2) + 4Dψa2 + aa0 − ba30 + ca50 = 0, (31)

(3w4 − 2w2 + 3)[ka31CD + 8ka1a
2
2D

2] + 2ψCa1 − 3ba20a1 + 5ca40a1 + aa1 = 0, (32)

(3w4 − 2w2 + 3)

[
3

2
kBDa31 + 10kCDa21a2 + 8kD2a32

]
+

3Bψa1 + 8Cψa2 + aa2 − 3ba0a
2
1 − 3ba20a2 + 10ca30a

2
1 + 5ca40a2 = 0, (33)

(3w4 − 2w2 + 3)[kC2a31 + 2kADa31 + 13kBDa21a2 + 28kCDa1a
2
2] +

4Aψa1 + 10Bψa2 − ba31 − 6ba0a1a2 + 10ca20a
3
1 + 20ca30a1a2 = 0, (34)

(3w4 − 2w2 + 3)

[
5

2
kBCa31 + 8ka21a2C

2 + 16kADa21a2 + 34kBDa1a
2
2+

24kCDa32
]

+ 12Aψa2 − 3ba21a2 − 3ba0a
2
2 + 5ca0a

4
1 + 30ca20a

2
1a2 + 10ca30a

2
2 = 0, (35)

(3w4 − 2w2 + 3)

[
3

2
kB2a31 + 3kACa31 + 19kBCa21a2 + 20kC2a1a

2
2 +

40kADa1a
2
2 + 28kBDa32

]
− 3ba1a

2
2 + 20ca0a

3
1a2 + 30ca20a1a

2
2 + ca51 = 0, (36)

(3w4 − 2w2 + 3)

[
7

2
kABa31 + 11kB2a21a2 + 22kACa21a2 + 46kBCa1a

2
2 +

16kC2a32 + 32kADa32
]
− ba32 + 5ca41a2 + 30ca0a

2
1a

2
2 + 10ca20a

3
2 = 0, (37)

(3w4 − 2w2 + 3)[2kA2a31 + 25kABa21a2 + 52kACa1a
2
2 + 26kB2a1a

2
2 +

36kBCa32] + 10ca31a
2
2 + 20ca0a1a

3
2 = 0, (38)

(3w4 − 2w2 + 3)[14ka21a2A
2 + 58kABa1a

2
2 + 20kB2a32 + 40kACa32] +

10ca21a
3
2 + 5ca0a

4
2 = 0, (39)

(3w4 − 2w2 + 3)[32ka1a
2
2A

2 + 44kABa32] + 5ca1a
4
2 = 0, (40)

24ka32A
2(3w4 − 2w2 + 3) + ca52 = 0. (41)

Solving Eq. (41), we get

a2 = ±
√
−24kγ

c
A (42)

where for the mathematical convenience, we define

γ ≡ 3w4 − 2w2 + 3

Next, we solve Eq. (40) to obtain the value of a1 as

a1 =
1

2

B

A
a2
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for B = 0, we get a1 = 0. From Eq. (39), we obtain

a0 = ∓
√
−8γk

3c
C (43)

From Eq. (38), we obtain 0 = 0 and Eq. (37) yield

b = 32γk

(
AD − 1

3
C2

)
(44)

Equation (36) yield 0=0 and from Eq. (35), we obtain

24kCDγa22 + 12Aψ − 3ba0a2 −
80

3
γkC2a0a2 = 0 (45)

Equation (34) yield 0=0 and from Eq. (33), we obtain the constraining relation among the

parameters as

ac = 192γ2k2A2D2 +
448

9
× γ2k2C4 − 256γ2k2C2AD − 8ψCc (46)

From Eq. (32), we obtain 0=0 and Eq. (31) yield

4Dψa2 + aa0 = a30

(
b+

8γk

3
C2

)
(47)

Let us now simplify Eq. (45) using Eqs. (42), (43) and (44), we obtain the constraining

relation

ψc = γ2k2C

(
32

9
C2 − 16 AD

)
(48)

Let us now take B = D = 0 in the set of Eqs. (31) to (41). For B = D = 0, Eqs. (44) and

(47) yield

C =

(
3ac

64γ2k2

) 1
4

=
(3ac)

1
4

√
8γk

(49)

From Eq. (48), we obtain the constraining relation

ψc =
32

9
γ2k2C3

Let us discuss the following special cases of Eq. (7).

Case (2a): For the case when B = D = 0, the solution of Eq. (7) is given by

[Ref]

z(ξ) =

√
−C
A

sech
(√

C ξ
)
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Note that the variable x in Eq. (7) is now replaced by the variable ξ. Thus the solution φ(ξ)

from Eq. (8) becomes

φ(ξ) = a0 + a1z(ξ) + a2z
2(ξ) = a0 + a2z

2(ξ)

= ∓
√
−8γk

c
C ±

(
−C
A
×
√
−24kγ

c
A

)
sech2

(√
C ξ
)

= ∓
√
−8γk

c
× (3ac)

1
4

√
8γk

∓
√
−24kγ

c
× (3ac)

1
4

√
8γk

sech2
(√

C ξ
)

= ∓(3ac)
1
4 ×

√
−1

c

[
1 +
√

3 sech2
(√

C ξ
)]

= ∓(3ac)
1
4 ×

√
−1

c

[
1 +
√

3 sech2

{(
3ac

64γ2k2

) 1
8

(x− wt)

}]

Note that this is the solitary wave solution of Eq. (30), provided that a < 0 and c < 0.

From Eq. (44), one can see that, if a < 0 and c < 0, then b is also less than 0. On the

other hand, if c > 0, then we get the imaginary solution, which is physically not accept-

able. Also, note that the obtained solitary wave is not static (see Ref. [8] for further details).

Case (2b): Next we take A = 1, B = 0, C = 2s and D = s2, (where s is an-

other constant) then Eq. (7) admits the solution as

z(ξ) = −
√
−s tanh(

√
−s ξ)

For this particular choice of parameters, we obtain the value of b from Eq. (44) as

b = −32

3
γks2 (50)

Using Eq. (48), we obtain the constraining relation as

ψc = −32

9
γ2k2s3 (51)

Simplifying Eq. (47), we obtain a = −6sψ and from Eqs. (46) and (51), we get

ac =
192

9
γ2k2s4 =

64

3
γ2k2s4

From here, we obtain the value of s as

s =

(
3ac

64γ2k2

) 1
4

=
(3ac)

1
4

√
8γk

9



Thus the solution (8) of Eq. (30) is given by

φ(ξ) = a0 + a1z(ξ) + a2z
2(ξ) = a0 + a2z

2(ξ)

= ∓
√
−8γk

3c
× (2s)±

√
−24γk

c
×
[
−s tanh2(

√
−s ξ)

]
= ∓

√
−8γk

3c
×

(
2 · (3ac)

1
4

√
8γk

)
∓
√
−24γk

c
× (3ac)

1
4

√
8γk

tanh2(
√
−s ξ)

= ∓(3ac)
1
4 ×

√
−1

c

[√
4

3
+
√

3 tanh2

{(
− 3ac

64γ2k2

) 1
8

(x− wt)

}]

Again this is the solitary wave solution of Eq. (30), provided that a < 0 and c < 0. From

Eq. (50), one can see that b is also less than 0. If c > 0, then we get the imaginary solution.

Again, the obtained solitary wave solution is not static [8].

Case (2c): Let us take A = m2, B = 0, C = −(1 + m2) and D = 1 with (0 < m2 < 1) in

Eq. (7), then the solution of (7) is given by [9] z(ξ) = sn(ξ). Substituting the value of A, D

and C2 in Eq. (44), we obtain the value of b as

b =
32γk

3
(m2 −m4 − 1)

Equation (48) yields the constraining relation among the parameters as

ψc =
16γ2k2

9
(3m4 − 2m6 + 3m2 − 2)

Using Eq. (46), we obtain the value of ac as

ac =
γ2k2

9

[
192 (m8 + 1)− 384 (m6 +m2) + 576 m4

]
=

192γ2k2

9

[
(m8 + 1)− 2(m6 +m2) + 3 m4

]
=

64γ2k2

3

[
(m8 + 1)− 2(m6 +m2) + 3 m4

]
Finally, the solution (8) of Eq. (30) becomes

φ(ξ) = a0 + a1z(ξ) + a2z
2(ξ) = a0 + a2z

2(ξ)

= ±
√
−8kγ

3c
(1 +m2)±

√
−24kγ

c
×m2 sn2(ξ)

= ±
√
−8kγ

3c

[
1 +m2 + 3m2 sn2(ξ)

]
10



This equation represents periodic wave solution of Eq. (30). In the limit m → 1, sn(ξ) →

tanh(ξ), and hence the solitary wave solution of Eq. (30) becomes

φ(ξ) = ±
√
−8kγ

3c

[
2 + 3 tanh2(ξ)

]
This solution is solitary wave for c < 0.

Case (2d): If we take A = −m2, B = 0, C = 2m2 − 1 and D = 1 − m2 with

(0 < m2 < 1) in Eq. (7), then the solution of (7) is given by [9] z(ξ) = cn(ξ). Using Eq.

(44), we obtain the value of b as

b =
32γk

3
(m2 −m4 − 1)

Solving Eq. (48), we obtain the value of ψc as

ψc =
16γ2k2

9
(3m4 − 2m6 + 3m2 − 2)

Equation (46) yields the value of ac as

ac =
64γ2k2

3

[
(m8 + 1)− 2(m6 +m2) + 3 m4

]
and hence the solution (8) of Eq. (30) becomes

φ(ξ) = a0 + a1z(ξ) + a2z
2(ξ) = a0 + a2z

2(ξ)

= ∓
√
−8kγ

3c
(2m2 − 1)∓

√
−24kγ

c
×m2 cn2(ξ)

= ∓
√
−8kγ

3c

[
2m2 − 1 + 3m2 cn2(ξ)

]
which again represents periodic wave solution of Eq. (30). In the limit m → 1, cn(ξ) →

sech(ξ), and hence the solitary wave solution of Eq. (30) becomes

φ(ξ) = ∓
√
−8kγ

3c

[
1 + 3 sech2(ξ)

]
The obtained solution is physically acceptable for c < 0.

Case (2e): If we take A = −1, B = 0, C = 2 − m2 and D = m2 − 1 with

(0 < m2 < 1) in Eq. (7), then the solution of (7) is given by [9] z(ξ) = dn(ξ). In this case

Eq. (44) becomes

b =
32γk

3
(m2 −m4 − 1)
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and Eq. (48) yields

ψc =
16γ2k2

9
(3m4 − 2m6 + 3m2 − 2)

Equation (46) yields the value of ac as

ac =
64γ2k2

3
[(m8 + 1)− 2(m6 +m2) + 3m4]

and hence the Eq. (8) yields the periodic wave solution of Eq. (30) as

φ(ξ) = a0 + a1z(ξ) + a2z
2(ξ) = a0 + a2z

2(ξ)

= ∓
√
−8kγ

3c
(2−m2)∓

√
−24kγ

c
dn2(ξ)

= ∓
√
−8kγ

3c

[
2−m2 + 3 dn2(ξ)

]
When m→ 1, dn(ξ)→ sech(ξ), and the solitary wave solution of Eq. (30) becomes

φ(ξ) = ∓
√
−8kγ

3c

[
1 + 3 sech2(ξ)

]
Again note that the solution is physically acceptable only when c < 0.

II. CONCLUDING REMARKS

The solitary wave solution of the non-canonical lagrangian for φ6 potential have been

obtained using the auxiliary equation method. The auxiliary equation method does not

give a solution of non-canonical Lagrangian with φ6 potential. To find the solution of

this equation, we have to use some perturbative technique, like reductive perturbation

technique [10], modified reductive perturbation technique [11], multiple-time scale per-

turbation method [12], homotopy perturbation method [13], etc. On the other hand,

in the the presence of gradient term (or Ginzburg term) we obtained the solitary and

periodic wave solutions of the non-canonical Lagrangian with φ6 potential. Also note that

the obtained solution is physically acceptable for a < 0, b < 0 and c < 0 (see cases (2a)-(2e)).

The canonical Lagrangian with Ginzburg term have been extensively studied in the

context of field theory, cosmology and condensed matter physics. For the first time in

this work, we have obtained the solitary and periodic wave solutions of the non-canonical

Lagrangian with φ6 potential and Ginzburg term. Since the non-canonical Lagrangian

12



has been studied only in the context of cosmology, the result obtained here may help us

to explain some new phenomena in field theory and condensed matter physics. Also, the

exact solutions obtained here may provide a background for developing the perturbative

solutions for several related equations. It would also be interesting to find the solution of

non-canonical Lagrangian with coupled φ6 potential [14,15,16]. Such studies are in progress.
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