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Optimization (constrained as well as unconstrained) method aims to find the maxima or
minima of a function f(x). In constrained optimization case, there is some constraint on
x. We will cover some of the famous unconstrained optimization techniques such as gra-
dient descent method, stochastic gradient descent method, Newton’s method, steepest de-
scent method, random search method and simulated annealing method. The random search
method and simulated annealing method are based on Monte-Carlo simulation method. We
will also discuss the constrained optimization problem such as Lagrange method of under-
mined multiplier and Karush-Kuhn-Tucker (KKT) condition.



Calculus of One and Two Variables

I. INTRODUCTION

In optimization (constrained as well as unconstrained) problem our aim is to find the maxima
or minima of a function f(x). In constrained optimization case, there is some constraint on
x. In mathematical form, the constrained optimization problem can be written as

min
x∈C

f(x)

where C is some constraint set. If there is no constraint for x, then it is called an uncon-
strained optimization problem.

• We will discuss the constrained as well as unconstrained optimization problem in this
module.

• We will cover some of the famous unconstrained optimization techniques such as gra-
dient descent method, stochastic gradient descent method, Newton’s method, steepest
descent method, random search method and simulated annealing method. The random
search method and simulated annealing method are based on Monte-Carlo simulation
method.

• We will also discuss the constrained optimization problem such as Lagrange method
of undermined multiplier and Karush-Kuhn-Tucker (KKT) condition.

A. Elementary Calculus

Let us consider a function one variable f(x). Then the derivative of the function is defined
as

df

dx

where df
dx

represents the rate of change of f with respect to x. For example, if f(x) = x2,
then

df

dx
= f ′(x) = 2x
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Let us now consider a function of two variables f(x, y). The total derivative of the function
is defined as

df =
(

∂f

∂x

)
dx +

(
∂f

∂y

)
dy

where ∂f
∂x

on the right hand side represents the partial derivative of f with respect to x,
keeping y constant and the second term ∂f

∂y
represents the partial derivative of f with respect

to y, keeping x constant.

Ex: Given that
f(x, y) = 4 − x2 − 2y2

Find ∂f
∂x

(1, 1) and ∂f
∂y

(1, 1).

Sol: We have
∂f

∂x
= −2x then ∂f

∂x
(1, 1) = −2

Similarly,
∂f

∂y
= −4y then ∂f

∂y
(1, 1) = −4

Higher Derivative: Suppose f is function of two variables, then its partial derivatives ∂f
∂x

and ∂f
∂y

are also functions of two variables. Then the derivative of the derivative (also called
as second partial derivative) are given by

∂2f

∂x2 = ∂

∂x

(
∂f

∂x

)
∂2f

∂y∂x
= ∂

∂y

(
∂f

∂x

)
∂2f

∂x∂y
= ∂

∂x

(
∂f

∂y

)
∂2f

∂y2 = ∂

∂y

(
∂f

∂y

)

Ex: Find the second partial derivative of

f(x, y) = x3 + x2y3 + 2y2x

Sol: The first partial derivative of the function is

∂f

∂x
= 3x2 + 2xy3 + 2y2,

∂f

∂y
= 3x2y2 + 4xy
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Then the second partial derivative becomes

∂2f

∂x2 = ∂

∂x
(3x2 + 2xy3 + 2y2) = 6x + 2y3

∂2f

∂y∂x
= ∂

∂y
(3x2 + 2xy3 + 2y2) = 6xy2 + 4y

∂2f

∂x∂y
= ∂

∂x
(3x2y2 + 4xy) = 6xy2 + 4y

∂2f

∂y2 = ∂

∂y
(3x2y2 + 4xy) = 6x2y + 4x

Note that ∂2f
∂x∂y

= ∂2f
∂y∂x

, which is not true in general. There are many examples where
∂2f

∂x∂y
̸= ∂2f

∂y∂x
. In the rest part of the notes, we will denote the partial derivatives by the

following notation:

fx = ∂f

∂x
, fy = ∂f

∂y
, fx,y = ∂2f

∂x∂y
, fx,x = ∂2f

∂x2 , · · ·

B. Taylor’s Series

Assume a function of single variable f : R → R which is n times differentiable f ∈ Cm on
an interval [a, x]. Denote h = x − a, then

f(x) = f(a) + h

1!
df

dx

∣∣∣∣∣
x=a

+ h2

2!
d2f

dx2

∣∣∣∣∣
x=a

+ · · · + hn−1

(n − 1)!
dn−1f

dxn−1

∣∣∣∣∣
x=a

+ Rn

is the Taylor series expansion of f(x) near the point x = a and Rn is called the remainder
term. The Taylor’s formula for function of two variable f(x, y) near the point (x0, y0) is
given by

f(x, y) = f(x0, y0) + (x − x0)
∂f

∂x

∣∣∣∣∣
x=x0,y=y0

+ (y − y0)
∂f

∂y

∣∣∣∣∣
x=x0,y=y0

+ 1
2(x − x0)2 ∂2f

∂x2

∣∣∣∣∣
x=x0,y=y0

+

1
2

∂2f

∂y2

∣∣∣∣∣
x=x0,y=y0

+ (x − x0)(y − y0)
∂2f

∂x∂y

∣∣∣∣∣
x=x0,y=y0

+ · · ·

where we assumed that
∂2f

∂x∂y
= ∂2f

∂y∂x

Ex: Find the Taylor’s series expansion of

f(x) = e−x
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FIG. 1. Plot of e−x and its first and second order Taylor approximation near x = 0.

near x = 0.

Sol: We have

f(x) = e−x, f ′(x) = −e−x, f ′(0) = −1, f ′′(0) = 1

Therefore

f(x) = e−x = f(0) + (x − 0)f ′(0) + (x − 0)2

2! f ′′(0) + · · · + · · ·

= 1 − x + x2

2 + · · ·

See Fig. 1.

C. Maxima and Minima of a Function of One Variable

Let us consider a function of one variable, say f(x). As an example let us consider

f(x) = x2

Now we know from elementary calculus that at the point of maxima or minima, the slope
of the function is zero, i.e.,

df

dx
= f ′(x) = 2x = 0

From here, we obtain x = 0. Thus the point x = 0 (also called as stationary point) is a point
of maxima or minima. Let us obtain the condition to check the nature of the stationary
point.
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D. Quadratic Approximation in One Variable

We know that the Taylor series expansion of the function f(x) about the point x0 is given
by

f(x) = f(x0) + df

dx

∣∣∣∣∣
x=x0

+ 1
2(x − x0)2 d2f

dx2 (x0)
∣∣∣∣∣
x=x0

+ · · · +

At a stationary point x0 we have f ′(x0) = 0 and also assuming that the point x0 is very
close to the point x, so that the higher order term in the Taylor series can be ignored.

f(x) ≈ f(x0) + 1
2(x − x0)2 f ′′(x)|x=x0

This is the quadratic approximation of function f(x) near x0.

1. If f ′′(x0) > 0, then graph of f(x) near x0 is parabola opening upward, and so f has a
local minimum at x = x0.

2. If f ′′(x0) < 0, then graph of f near x0 is parabola opening downward, and so f has a
local maximum at x = x0.

3. If f ′′(x0) = 0, then f is a constant function near x0 and so the quadratic approximation
says nothing about the type of stationary point at x0.

In the case of f(x) = x2, we know that the function f(x) is stationary at the point at x = 0
and hence

d2f

dx2 = 2 > 0

Therefore, the stationary point x = 0 is the point of minima of the function f(x).

Q1: Find the maxima or/and minima of the following functions:

f(x) = x2 + 2x, f(x) = x4 + x3 + 3x2

II. MAXIMA AND MINIMA OF FUNCTION OF TWO VARIABLES

For functions of one variable, we sometimes use the second derivative to distinguish among
stationary points of different types.The situation is similar but a little more complicated for

6



functions of two variables. Suppose that a function f(x, y) has a local maxima or a local
minimum at (x0, y0). If both partial derivative exist, then

fx(x0, y0) = 0, fy(x0, y0) = 0

There are three main types of stationary point for a function f(x, y).

1. Local Minimum Point: A stationary point (x0, y0) is a local minimum point for f

if f(x0, y0) ≤ f(x, y) for all (x, y) near (x0, y0).

2. Local Maximum Point: A stationary point (x0, y0) is a local maximum point for f

if f(x0, y0) ≥ f(x, y) for all (x, y) near (x0, y).

3. Saddle Point: A stationary point (x0, y0) is a saddle point for f if f assumes neither
a local maximum nor a local minimum at (x0, y0).

A. Quadratic Approximation for Function of Two Variables

Let us now consider the Taylor series of this function f(x, y) near the point (x0, y0).

f(x, y) = f(x0, y0) + (x − x0)
∂f

∂x

∣∣∣∣∣
x=x0,y=y0

+ (y − y0)
∂f

∂y

∣∣∣∣∣
x=x0,y=y0

+ 1
2(x − x0)2 ∂2f

∂x2

∣∣∣∣∣
x=x0,y=y0

+

1
2

∂2f

∂y2

∣∣∣∣∣
x=x0,y=y0

+ (x − x0)(y − y0)
∂2f

∂x∂y

∣∣∣∣∣
x=x0,y=y0

+ · · ·

Now we will assume that the point (x0, y0) is close to the point (x, y), so that the higher
order term in (x − x0) and (y − y0) can be ignored on the right hand side.

f(x, y) ≈ f(x0, y0) + (x − x0)fx(x0, y0) + (y − y0)fy(x0, y0)y + (x − x0)2

2 fxx(x0, y0) +

(x − x0)(y − y0)fxy(x0, y0) + (y − y0)2

2 fyy(x0, y0)

Since (x0, y0) is a stationary point, then the first-order terms disappear. Here is what
remains:

f(x, y) ≈ f(x0, y0) + (x − x0)2

2 fxx(x0, y0) +

(x − x0)(y − y0)fxy(x0, y0) + (y − y0)2

2 fyy(x0, y0) (1)
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The first term here is constant, and so what matters here are the last three terms, which
have the form Ax2 + Bxy + Cy2, where A = fxx(x0,y0)

2 , C = fyy(x0,y0)
2 and B = fxy(x0, y0).

Then

f(x, y) − f(x0, y0) ≈ Ax2 + Bxy + Cy2

We can write

f(x, y) − f(x0, y0) ≈ A
(

x2 + B

A
xy + C

A
y2
)

≈ A

[(
x + B

2A
y
)2

+
(

C

A
− B2

4A2

)
y2
]

This shows that type of stationary point depends on the sign of coefficient of y2. Let

C

A
− B2

4A2 ≥ 0 or 4AC − B2 ≥ 0

1. If 4AC − B2 > 0, then f has either a local maxima or local minimum at (x0, y0),
depends on whether A < 0 or A > 0.

2. If 4AC − B2 < 0, then f has saddle point at (x0, y0).

3. If 4AC − B2 = 0, then various things can happen and we normally look for more
information.

We have 4AC − B2 = fxxfyy − f 2
xy. In other words 4AC − B2 is determinant of Hessian

matrix

f ′′(x0, y0) =

fxx(x0, y0) fxy(x0, y0)
fxy(x0, y0) fyy(x0, y0)


We have 4AC − B2 = fxxfyy − f 2

xy. In other words 4AC − B2 is determinant of Hessian
matrix

f ′′(x0, y0) =

fxx(x0, y0) fxy(x0, y0)
fxy(x0, y0) fyy(x0, y0)


Theorem: Let (x0, y0) be a stationary point of a function f and f ′′(x0, y0) be the Hessian
matrix of f and let

D = fxx(x0, y0)fyy(x0, y0) − f 2
xy(x0, y0)

be the determinant of f ′′(x0, y0). Then

1. If D > 0 and fxx(x0, y0) > 0, then f has local minimum at (x0, y0).
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2. If D > 0 and fxx(x0, y0) < 0, then f has local maxima at (x0, y0).

3. If D < 0, then f has saddle point at (x0, y0).

4. If D = 0, then more information is needed.

B. Matrix Representation

Note that the Eq. (1) in matrix form can be written as

f(x) ≈ f(x0) + 1
2XT HX (2)

where

X =

x − x0

y − y0

 , H =

fxx fxy

fxy fyy


Note that the Eq. (2) is general case of one variable optimization problem. From this
equation we can see that if

• XT HX > 0, then f(x, y) has local minimum at (x0, y0).

• XT HX < 0, then f(x, y) has local maxima at (x0, y0).

• XT HX = 0, then more information is needed.

Definition: A matrix H is called positive semi-definite (p.s.d.) if for all X,

XT HX ≥ 0

and positive definite (p.d.) if
XT HX > 0

Similarly, a matrix H is called negative definite (n.d.) if for all X,

XT HX < 0

It can be verified that a p.d. matrix has positive eigenvalues and a n.d. matrix has negative
eigenvalues.

Q1: Determine the Hessian and hence maxima/minima of the following function

f(x, y) = 2 − x2 − xy − y2, f(x, y) = x2 + y2
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Q2: Suppose we are given the Hessian of some functions at three different points are as
follows:

H(X1) =

 2 −1
−1 2

 , H(X2) =

1 2
2 1

 , H(X3) =

4 2
2 1


Which among the above points will be a local minimizer.

III. FUNCTION OF n VARIABLES

For a function of n real variables, f(x1, x2, . . . , xn), we require that, at all stationary points,
∂f/∂xi = 0 for all xi. In order to determine the nature of a stationary point, we must
expand the function as a Taylor series about the point. The Taylor expansion for a function
of n variables is given by

f(x) = f(X0) +
∑

i

∂f

∂xi

Xi + 1
2!
∑

i

∑
j

∂2f

∂xi∂xj

XiXj + · · ·

where

x =



x1

x2
...

xn


, Xi = xi − xi0

The partial derivatives are evaluated at (x10, x20, . . . , xn0). Now at all stationary points,
∂f
∂xi

= 0 for all xi. Hence finally, we have

△f = f(x) − f(x0) ≈ 1
2
∑

i

∑
j

∂2f

∂xi∂xj

XiXj (3)

This equation in matrix form can be written as

△f = XT HX

where

X =



x1 − x10

x2 − x20
...

xn − xn0


, H =



∂2f
∂x2

1

∂2f
∂x1∂x2

· · · ∂2f
∂x1∂xn

∂2f
∂x2∂x1

∂2f
∂x2

2
· · · ∂2f

∂x2∂xn

... ... . . . ...
∂2f

∂xn∂x1

∂2f
∂xn∂x2

· · · ∂2f
∂x2

n


Hence from above equation, we can see that if
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• XT HX > 0, then f(x1, x2, · · · , xn) has local minimum at (x10, x20, · · · , xn0).

• XT HX < 0, then f(x1, x2, · · · , xn) has local maxima at (x10, x20, · · · , xn0).

• XT HX = 0, then more information is needed.

Since H is real and symmetric it has n real eigenvalues λr and n orthogonal eigenvectors er,
which after suitable normalization satisfy

Her = λrer, eT
r es = δrs

These eigenvectors form a basis set for the n-dimensional space and we can therefore expand
X in terms of them, obtaining

X =
∑

r

arer

where the ar are coefficients dependent upon X. Substituting this into △f , we find

△f = 1
2XT HX = 1

2
∑

r

λra
2
r

Now, for the stationary point to be a minimum, we require

△f = 1
2
∑

r

λra
2
r > 0

for all sets of values of the ar, and therefore all the eigenvalues of H to be greater than zero.
Conversely, for a maximum we require

△f = 1
2
∑

r

λra
2
r < 0

and therefore all the eigenvalues of H to be less than zero. If the eigenvalues have mixed
signs, then we have a saddle point. Note that the test may fail if some or all of the eigen-
values are equal to zero and all the non-zero ones have the same sign.

Ex: Derive the conditions for maxima, minima and saddle points for a function of two
real variables, using the above analysis.

Sol: For a two-variable function the matrix H is given by

H =

fxx fxy

fxy fyy


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Therefore its eigenvalues satisfy the equation∣∣∣∣∣∣∣
fxx − λ fxy

fxy fyy − λ

∣∣∣∣∣∣∣ = 0

Hence

(fxx − λ)(fyy − λ) − f 2
xy = 0

or λ2 − (fxx + fyy)λ + fxxfyy − f 2
xy = 0

Thus
2λ = (fxx + fyy) ±

√
(fxx + fyy)2 − 4(fxxfyy − f 2

xy)

Now, that H is real and symmetric implies that its eigenvalues are real, and so for both
eigenvalues to be positive (corresponding to a minimum), we require fxx and fyy positive
and also

fxx + fyy >
√

(fxx + fyy)2 − 4(fxxfyy − f 2
xy)

or fxxfyy − f 2
xy > 0

A similar procedure will find the criteria for maxima and saddle points.

IV. SUMMARY

Necessary and Sufficient Condition for Optimality: Our goal is to find the local
(ideally global) minimizer of f .

• A point x∗ ∈ Rn is said to be local minimizer of f : Rn → R if there exists ϵ > 0
such that

f(x∗) < f(x) ∀ x ∈ Rn, such that |x − x∗| ≤ ϵ

Proposition 1: (Necessary and sufficient conditions for local optimality) – Let f : Rn → R

be a function in C2 (here C2 refers to double differentiable function). If x∗ ∈ Rn is a local
minimizer of f , then

1. ∇f(x∗) = 0

2. ∇2f(x∗) is positive semi-definite (p.s.d.)
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If ∇2f(x∗) is positive definite (p.d.), then x∗ is a local minimizer of f . Hence in order to
minimize a function f over Rn,

• We will have to find a point with zero gradient

• The Hessian at this point can then be used to determine if this point is indeed a (local)
minimizer of f .

[1] Harikrishna Narasimhan, http://drona.csa.iisc.ernet.in/˜e0270/Jan-2015/Tutorials/

lecture-notes-1.pdf.

[2] Edwin K. P. Chong and Stanislaw H. Żak, An Introduction to Optimization 4th Ed., Wiley

2014.
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Iterative Methods

V. ITERATIVE METHODS

In this lecture we will discuss some of the famous iterative methods to find the local minima
of the function.

A. Gradient Descent Method

Let us consider a function

f(x) = (x − 2)2

In iterative process first we have to make some initial guess. Let us assume that our initial
guess is x1 which is lying to the left of the minimizer of this function (see Fig. 2). At
x1, the slope/gradient of this function is negative. Now one can decrease the value of the
function by moving to the right of x1. Similarly, if our initial guess is x2 to the right of the
minimizer, the slope/gradient of the function is positive, and therefore that one can decrease
the function value by moving to the left of x2.

In both cases, moving in a direction opposite to the sign of the function slope at a
point produces a decrease in its value. In general, for any function f : Rn → R one
can decrease the value of f at a point, by moving in a direction opposite to that of
the gradient of f at that point.

Let x0 ∈ Rn and x1 ∈ Rn such that

x1 = x0 − η0∇f(x0), η0 > 0

where

x0 =



x10

x20
...

xn0


, x1 =



x11

x21
...

xn1


14



FIG. 2. Plot of one variable function f(x) = (x − 2)2.

Then from the first-order Taylor expansion of f at x0, we have

f(x1) ≈ f(x0) + (x1 − x0)∇f(x0)

≈ f(x0) − η0 |∇f(x0)|2

from here we can see that

f(x1) < f(x0)

In the above equation

∇f =



∂f
∂x1

∂f
∂x2...
∂f

∂xn


Now we move to another point x2 and again follow the same procedure, i.e., at the point x2,
we have

x2 = x1 − η1∇f(x1), η1 > 0

and

f(x2) ≈ f(x1) + (x2 − x1)∇f(x1)

≈ f(x1) − η1 |∇f(x1)|2

In the i + 1th iteration, the update rule is

xi = xi−1 − ηi−1∇f(xi−1), η > 0
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B. Stopping Criterion

In the above algorithm if
∇f(xk) = 0 (4)

Then
xi = xi−1

We can use the above as the basis for a stopping criterion for the algorithm. However,
condition (4) is not directly suitable as a practical stopping criterion, because the numerical
computation of the gradient will rarely be identically equal to zero. We may compute

|f(xi) − f(xi−1)|

and if the difference is less than some threshold, then we stop. Another alternative is to
compute the absolute value of the difference (also called as norm)

|xi − xi−1|

and we stop if the norm is less than a pre-specified threshold (also called as tolerance). The
algorithm for basic gradient descent method is described below in the table:

—————————————
Gradient Descent Method
—————————————
Input: f : Rn → R

Initialize: x0 ∈ Rn

tol = 0.00001
i = 0
while(|xi − xi−1| > tol)
Select step-size ηi > 0
xi = xi−1 − ηi−1∇f(xi)
Output: xi

Ex: Use the gradient descent method to find the minimum of the function

f(x) = (x − 2)2
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The Python code for the given function using the gradient descent method is provided in
the table below:

import numpy as np
x 0 = 0 .0
x 1 = 4 .0 # Our i n i t i a l guess i s x=4
p r e c i s i o n = 0.00001

x l i s t = [ x 1 ]
y l i s t = [ f ( x 1 ) ]
i=0
e t a i = 0.01∗ np . exp(− i ) # Var iab le s tep s i z e

# f = lambda x : (x−2)∗∗2
# re tu rn s the value o f the d e r i v a t i v e o f our func t i on

de f f p r ime (x ) :
r e turn 2∗(x−2)

whi le abs ( x 1 − x 0 ) > p r e c i s i o n :
x 0 = x 1
g r a d i = −f pr ime ( x 0 )
x 1 = x 0 + e t a i ∗ g r a d i
x l i s t . append ( x 1 )
y l i s t . append ( f ( x 1 ) )

p r i n t (” Local minimum occurs at : ” , x 1 )
p r i n t (”Number o f s t ep s : ” , l en ( x l i s t ) )

Local minimum occurs at: 2.00048548205
Number of steps: 413
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In the above code the step size (also called as learning rate) is taken as

ηi = 0.01 ∗ exp(−i)

However it is not clear how one should choose ηi in each iteration. While a small value of
ηi will result in slow convergence, with a large value, we will not be able to guarantee a
decrease in f after every iteration. We will discuss the methods to choose appropriate step
size.

The gradient descent can be susceptible to local minima in general. If the function is
a convex function, then the local minima is equal to the global minima. Thus gradient
descent always converges if the function is convex.

C. Linear Regression

Let us suppose we have a data set of some population. The variables in the data are height
and weight of some population. Our goal is to obtain a relation between height and weight
of the people. Let us assume that our independent variable is weight (represented by x)
and dependent variable is height (represented by y). Let us also assume that the relation
between height and weight is linear, i.e.,

ŷi = α0 + α1xi1 =
1∑

j=0
αjxij, xi0 = 1

For historical reasons, the function y is called a hypothesis. When the target variable that
we’re trying to predict is continuous, we call the learning problem a regression problem.
When y can take on only a small number of discrete values we call it a classification prob-

lem. The parameters αi, i = 1, 2 are also called as weights. If the number of independent
variables are more than one then the above equation gets modified to

ŷi = α0 + α1xi1 + α2xi2 + · · · + αmxim =
m∑

j=0
αjxij, xi0 = 1

In matrix notation, this equation can be written as

yi = αααT X
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where

ααα =



α0

α1
...

αm


, X =



1
xi1
...

xim


Now for ŷ to be a good predictor of x, the difference between y and ŷ should be minimum.
In general, we minimize the cost function

J(ααα) =
∑
i=n

[yi − ŷi]2 =
n∑

i=1

yi −
m∑

j=0
αjxij

2

where n is the total number of data points. This is the familiar least-squares cost function
that gives rise to the ordinary least squares regression model. Now choose ααα that
minimizes the cost function. In order to minimize the cost function, we first find the gradient
of the cost function

∂J(ααα)
∂αj

= −2
n∑

i=1

[
yi −

m∑
k=0

αkxik

]
xij

In case of single variable regression problem, we have m = 0, 1. Therefore

∂J(ααα)
∂α0

= −2
n∑

i=1
[yi − α0 − α1xi1] = −2

n∑
i=1

[yi − ŷi]

∂J(ααα)
∂α1

= −2
n∑

i=1
[yi − α0 − α1xi1] xi1 = −2

n∑
i=1

[yi − ŷi]xi1

Now we use the gradient descent algorithm to find the optimal value of the parameters
α0, α1. Here we start with some initial ααα and update the parameters according to the rule

αi = αi−1 − ηi−1 ∂J(ααα)
∂αj

Substituting the value of the derivative, we obtain

αi
j = αi−1

j + 2ηi−1
n∑

i=1

[
yi −

m∑
k=0

αkxik

]
xij (5)

The update rule for the parameters in case of single variable regression can therefore be
written as

αi
0 = αi−1

0 + 2ηi−1
n∑

i=1
[yi − α0]

αi
1 = αi−1

1 + 2ηi−1
n∑

i=1
[yi − α1xi1] xi1
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The rule is called the LMS (least mean squares) update rule, and is also known as the
Widrow-Hoff learning rule. Note that the cost function J in our example is a convex
quadratic function. We can prove that if the function is a convex function, then the local
minima is equal to the global minima.

• For a single training example, this gives the update rule:

αi
j = αi−1

j + 2ηi−1
[
yi −

m∑
k=0

αkxik

]
xij (6)

D. Stochastic Gradient Descent Method

The LSM rule for a single training example is given by Eq. (6). Let us modify this method
for training set of more than one example. There are two ways to do this:

1. The first is replace it with the following algorithm while (|αi
j − αi−1

j | > tol)

αi
j = αi−1

j + 2ηi−1
n∑

i=1

[
yi −

m∑
k=1

αkjxkj

]
xij

This method looks at every example in the entire training set on every step, and
is called batch gradient descent. This can be quite slow if the training set is
sufficiently large.

2. The second one is to use the stochastic gradient descent method. According to
this algorithm, we repeatedly run through the training set, and each time we encounter
a training example, we update the parameters according to the gradient of the error
with respect to that single training example only. Thus, in stochastic gradient descent,
we update our values after looking at each item in the training set, so that we can start
making progress right away. The algorithm of stochastic gradient descent method are
as follows:

1 Randomly shuffle the data p times

2 for k=1 to p do

3 for i=1 to n do

αi
j = αi−1

j + 2ηi−1
n∑

i=1

[
yi −

m∑
k=1

αkjxkj

]
xij

end for
end for
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3. With batch gradient descent, we must go through the entire data set before we make
any progress. With stochastic gradient algorithm though, we can make progress right
away and continue to make progress as we go through the data set.

4. When the training set is large, stochastic gradient descent is often preferred over batch
gradient descent.

VI. NEWTON’S METHOD

We will now discuss the Newton’s method for unconstrained optimization. In gradient
descent method we start with initial point x0 ∈ Rn and at each iteration i obtains a new
point by moving in the direction of the negative gradient of f at the current point:

xi = xi−1 − ηi−1∇f(xi−1), ηi−1 > 0

For appropriate choices of ηi’s, this procedure always produces a decrease in the value of f

after each iteration. This is evident from the first-order Taylor expansion of f , which tells
us that for a small ηi,

f(xi) ≈ f(xi−1) − ηi−1∇f(xi−1)T ∇f(xi−1) < f(xi−1)

We can use a more general update rule:

xi = xi−1 + ηi−1di−1, ηi > 0

with the direction di ∈ Rn chosen such that

∇f(xi−1)T di−1 < 0

We will call any direction that satisfies the mentioned condition as a descent direction at
xi. From here we can also see that in the case of gradient descent method,

di−1 = −∇f(xi−1)

Slow convergence is one of the problem of gradient descent method. Newton’s method is
one optimization procedure that uses a different descent direction at each iteration, which
has better convergence properties than gradient descent in many settings.
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• Remember that our aim is to find the point at which the gradient of the function
is zero. The Newton’s method is one such method which can be used to find the
point at which the gradient of the function is zero. Before that let us first discuss the
Newton-Raphson method of root finding.

1. Newton-Raphson Method

We seek one or more points at which the value of the function f is zero.

2. Interpretations of Newton’s Method

In Newton’s method, it is assumed at once that the function f is differentiable. This implies
that the graph of f has a definite slope at each point and hence a unique tangent line. Now
let us pursue the following simple idea. At a certain point (x0, f(x0)) on the graph of f ,
there is a tangent, which is a rather good approximation to the curve in the vicinity of that
point. Analytically, it means that the linear function

l(x) = f ′(x0)(x − x0) + f(x0)

is close to the given function f near x0. At x0, the two functions l and f agree. We take
the zero of l as an approximation to the zero of f . The zero of l is easily found:

x1 = x0 − f(x0)
f ′(x0)

Thus, starting with point x0 (which we may interpret as an approximation to the root
sought), we pass to a new point x1 obtained from the preceding formula. Naturally, the
process can be repeated (iterated) to produce a sequence of points:

x2 = x1 − f(x1)
f ′(x1)

, x3 = x2 − f(x2)
f ′(x2)

etc. Under favorable conditions, the sequence of points will approach a zero of f . The
geometry of Newton’s method is shown in Fig. 3. The line y = l(x) is tangent to the curve
y = f(x). It intersects the x-axis at a point x1. The slope of l(x) is f ′(x0).
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FIG. 3. Geometry of Newton-Raphson Method

3. Another Interpretation of Newton-Raphson Method

There are other ways of interpreting Newton’s method. Suppose again that x0 is an initial
approximation to a root of f . We ask: What correction h should be added to x0 to obtain
the root precisely? Obviously, we want

f(x0 + h) = 0

If f is a sufficiently well-behaved function, it will have a Taylor series at x0. Thus, we could
write

f(x0) + hf ′(x0) + h2

2 f ′′(x0) + · · · = 0

Determining h from this equation is, of course, not easy. Therefore, we give up the expec-
tation of arriving at the true root in one step and seek only an approximation to h. This
can be obtained by ignoring all but the first two terms in the series:

f(x0) + hf ′(x0) = 0

The h that solves this is not the h that solves f(x0 + h) = 0, but it is the easily computed
number

h = − f(x0)
f ′(x0)

Our new approximation is then

x1 = x0 + h = x0 − f(x0)
f ′(x0)
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and the process can be repeated. In retrospect, we see that the Taylor series was not needed
after all because we used only the first two terms. In the analysis to be given later, it is
assumed that f ′′ is continuous in a neighborhood of the root. This assumption enables us to
estimate the errors in the process. If Newton’s method is described in terms of a sequence
x0, x1, . . ., then the following recursive or inductive definition applies:

xn+1 = xn − f(xn)
f ′(xn)

Naturally, the interesting question is whether

lim
n→∞

xn = r

where r is the desired root.

• In the use of Newton’s method, consideration must be given to the proper choice of a
starting point.

• Usually, one must have some insight into the shape of the graph of the function.

Ex: Now we illustrate Newton’s method by locating a root of

x3 + x = 2x2 + 3

We apply the method to the function

f(x) = x3 − 2x2 + x − 3

starting with x0 = 3. Of course,

f ′(x) = 3x2 − 4x + 1

and these two functions should be arranged in nested form for efficiency: Figure 4 shows a
computer plot of three iterations of Newton’s method for this sample problem.

A. Optimization Using Newton’s Method

Note that if we replace the function f(x) by its derivative

g(x) = f ′(x)
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FIG. 4. Three steps of Newton’s method for f(x) = x3 − 2x2 + x − 3.

TABLE I. Newton-Raphson method for the equation x3 − 2x2 + x − 3.

n xn f(xn)

0 3.0 9.0

1 2.4375 2.04

2 2.2130327224731445 0.256

3 2.1755549386143684 6.46 × 10−3

4 2.1745601006550714 4.48 × 10−6

5 2.1745594102932841 1.97 × 10−12

then the Newton’s method will give the root of the function g(x), i.e., the root of the
derivative of the function f(x). Hence the update rule according to the Newton’s method
becomes

xi+1 = xi − g(xi)
g′(xi)

= 1 − f ′(xi)
f ′′(xi)

For multivariate function, the above equation gets modified to

xi+1 = xi − g(xi)
∇g(xi)

= 1 − ∇f(xi)
∇2f(xi)

where ∇2f(xi) is the Hessian at the point xi. Also, it can be shown using the positive
definiteness of the Hessian ∇2f(xi) at the initial point that the Hessian ∇2f(xi) at each
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subsequent point is also p.d. and hence invertible. The method is outlined below:

—————————————
Newton’s Method
—————————————
Input: f : Rn → R

Initialize: x0 ∈ Rn

tol = 0.00001
i = 0
while(|xi − xi−1| > tol)
Select step-size ηi > 0
xi = xi−1 − ηi−1 [∇2f(xi)]−1 ∇f(xi)
Output: xi

According to the Newton’s method, the update can be seen as moving in a direction

di−1 = −
[
∇2f(xi−1)

]−1
∇f(xi−1)

Further, by positive definiteness of ∇2f(xi−1), we have that

∇f(xi−1)T di−1 = −∇f(xi−1)T
[
∇2f(xi−1)

]−1
∇f(xi−1) < 0

and hence di−1 is indeed a descent direction.

Ex: Apply Newton-Raphson method to find the root of the function

f(x) = x3 − 2x2 + x − 3
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with starting point x0 = 3.

import numpy as np
x 0 = 0 .0
x 1 = 3 .0 # Our i n i t i a l guess i s x=3
p r e c i s i o n = 0.00001

x l i s t = [ x 1 ]
y l i s t = [ f ( x 1 ) ]
i=0
# f = lambda x : x∗∗3−2∗x∗∗2+x−3.0
# re tu rn s the value o f the func t i on

de f f ( x ) :
r e turn x∗∗3−2∗x∗∗2+x−3.0

# re tu rn s the value o f the d e r i v a t i v e o f our func t i on

de f f p r ime (x ) :
r e turn 3∗x∗∗2−4∗x+1.0

whi l e abs ( x 1 − x 0 ) > p r e c i s i o n :
x 0 = x 1
g r a d i = −f pr ime ( x 0 )
x 1 = x 0 + f ( x 0 )/ g r a d i
x l i s t . append ( x 1 )
y l i s t . append ( f ( x 1 ) )

p r i n t (”The root o f the func t i on i s : ” , x 1 )
p r i n t (”Number o f s t ep s : ” , l en ( x l i s t ) )
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The root of the function is: 2.1745594102933126
Number of steps: 6

Ex: Use Newton’s method to find the minima of the function

f(x) = x2

2 − sin(x), x0 = 0.5

import numpy as np
x 0 = 0 .0
x 1 = 0 .5 # Our i n i t i a l guess i s x=3
p r e c i s i o n = 0.00001

x l i s t = [ x 1 ]
y l i s t = [ f ( x 1 ) ]
z l i s t = [ f doub lepr ime ( x 1 ) ]
i=0

# f = lambda x : ( x∗∗2/2.0) −np . s i n (x )
# re tu rn s the value o f the d e r i v a t i v e o f our func t i on

de f f p r ime (x ) :
r e turn x−np . cos ( x )

# re tu rn s the second d e r i v a t i v e o f our func t i on

de f f doub lepr ime (x ) :
r e turn 1+np . s i n (x )
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whi le abs ( x 1 − x 0 ) > p r e c i s i o n :
x 0 = x 1
g r a d i = −f pr ime ( x 0 )
h e s i = f doub lepr ime ( x 0 )
x 1 = x 0 + g r a d i / h e s i
x l i s t . append ( x 1 )
y l i s t . append ( f ( x 1 ) )

p r i n t (” Local minimum occurs at : ” , x 1 )
p r i n t (”Number o f s t ep s : ” , l en ( x l i s t ) )

Local minimum occurs at: 0.739085133215
Number of steps: 5

B. Convex Function

Convex Set: A set S ⊆ Rn is said to be convex if for any x1, x2 ∈ S and α ∈ (0, 1), the
point

αx1 + (1 − α)x2

is also in S.

Convex Function: A function f : Rn → R is said to be convex if for any x1, x2 ∈ Rn

and α ∈ (0, 1)

f(αx1 + (1 − α)x2) ≤ αf(x1) + (1 − α)f(x2)

From the above definition, it can be seen that the plot of a convex function between any
two points will always lie (weakly) below the line joining the two points (see Fig. 5).

We can show that a function is convex if and only if its Hessian is positive semi-definite
at all points. A key property that follows from this is that all local minimizers of a
convex function are also its global minimizers.
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FIG. 5. Examples of convex and non-convex sets and functions.

Remark: Newton’s method work best for the case of convex functions. In other words,
Newton’s method works well if f ′′(x) > 0 everywhere.

C. Secant Method

Newton’s method for minimizing f uses second derivatives of f

xi = xi−1 − f ′(xi−1)
f ′′(xi−1)

If the second derivative is not available, we may attempt to approximate it using first
derivative information. We may approximate f ′′ with

f ′′(xi−1) = f ′(xi−1) − f ′(xi−2)
xi−1 − xi−2

Using the foregoing approximation of the second derivative, we obtain the algorithm

xi = xi−1 − f ′(xi−1) · xi−1 − xi−2

f ′(xi−1) − f ′(xi−2)

= xi−2f
′(xi−1) − xi−1f

′(xi−2)
f ′(xi−1) − f ′(xi−2)

This method is called the secant method. Like Newton’s method, the secant method does
not directly involve values of f(xi). Instead, it tries to drive the derivative f ′ to zero.

VII. LINE SEARCH METHOD

Note that in the method discussed above, it is not clear how one should choose η in each
iteration. While a small value of ηi will result in slow convergence, with a large value, we
will not be able to guarantee a decrease in f after every iteration. Below, we discuss the
schemes for selecting ηi, which come with convergence guarantees.
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A. Exact Line Search

A natural approach for step-size selection would be to choose a value that produces the
maximum decrease in function value at the given iteration:

ηi−1 ∈ arg min
η>0

f (xi−1 − η∇f(xi−1)

Note that the above sub-problem is itself an optimization problem (involving a single vari-
able). In some cases, this sub-problem can be solved analytically, resulting in a simple
closed-form solution for ηi−1.

Iterative algorithms for finding a minimizer of f : Rn → R are of the form

xi = xi−1 + ηi−1di−1 ηi−1 > 0

In other words, iterative algorithms for solving optimization problems involve a line search
at every iteration. Now ηi−1 is chosen to minimize

ϕi−1(η) = f(xi−1 + ηdi−1)

The vector di−1 is called the search direction. The choice of ηi−1 itself involves a one-
dimensional minimization. This choice ensures that under appropriate conditions

f(xi) < f(xi−1)

B. The Method of Steepest Descent

Steepest descent is a gradient algorithm where the step size ηi is chosen to achieve the
maximum amount of decrease of the objective function at each individual step.

ηi−1 ∈ arg min
η>0

f (xi−1 − η∇f(xi−1))

At each step, starting from the point xi, we conduct a line search in the direction −∇f(xi−1)
until a minimizer, xi−1, is found (see Fig. 6).

Proposition: If {xk}∞
k=0 is a steepest descent sequence for a given function f : Rn → R

then for each k the vector xi+1 − xi is orthogonal to the vector xi+2 − xi+1.
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FIG. 6. Method of steepest descent.

Proof: From the iterative formula of the method of steepest descent it follows that

⟨xi+1 − xi, xi+2 − xi+1⟩ = ηiηi+1 ⟨∇f(xi), ∇f(xi+1)⟩

To complete the proof it is enough to show

⟨∇f(xi), ∇f(xi+1)⟩ = 0

Observe that ηi is a nonnegative scalar that minimizes

ϕi(η) = f (xi − η∇f(xi))

Hence using the condition of minimization, and chain rule gives us

ϕ′
i(ηi) = dϕi

dη
(ηi) = ∇f (xi − ηi∇f(xi))T (−∇f(xi)) = − ⟨∇f(xi+1), ∇f(xi)⟩ = 0

Proposition: If {xk}∞
k=0 is a steepest descent sequence for a given function f : Rn → R

and if ∇f(xi) ̸= 0, then

f(xi+1) < f(xi)

Proof: recall that

xi+1 = xi − ηi∇f(xi)

where ηi ≥ 0 is the minimizer of

ϕi(η) = f (xi − η∇f(xi))
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over all η ≥ 0. Thus for η ≥ 0, we have

ϕi(ηi) ≤ ϕi(η)

By the chain rule

ϕ′
i(0) = dϕi

dη
(0) = −∇f (xi − 0 · ∇f(xi))T (∇f(xi)) = − |∇f(xi)|2 < 0

because ∇f (xi) ̸= 0 by assumption. Thus

ϕ′
i(0) < 0

This implies that there is an η̄ > 0 such that

ϕi(0) > ϕi(η), ∀ η ∈ (0, η̄]

Hence

f(xi+1) = ϕi(ηi) ≤ ϕi(η̄) < ϕi(0) = f(xi)

Ex: Use the steepest descent method to find the minimizer of

f(x1, x2, x3) = (x1 − 4)4 + (x2 − 3)2 + 4(x3 + 5)4

The initial point is

x0 =


4
2

−1


Sol: We find

∇f(x) =


4(x1 − 4)3

2(x2 − 3)
16(x3 + 5)3


Hence

∇f(x0) =


0

−2
1024


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Now

x0 − η∇f(x0) =


4
2

−1

− η


0

−2
1024



=


4

2 + 2η

−1 − 1024η


Hence

f (x0 − η∇f(x0)) =


0

(2 + 2η − 3)2

(−1 − 1024η + 5)4


To compute x1, we need

η0 = arg min
η≥0

f (x0 − η∇f(x0))

= arg min
η≥0

f
(
0 + (2 + 2η − 3)2 + 4(−1 − 1024η + 5)4

)
= arg min

η≥0
ϕ0(η)

Using the secant method, we obtain

η0 = 3.967 × 10−3

Then we compute

x1 = x0 − η0∇f(x0) =


4.000
2.008

−5.062


To find x2, we first determine

∇f(x1) =


0.000

−1.994
−0.003875


Next we find η1

η1 = arg min
η≥0

f (x1 − η∇f(x1))

= arg min
η≥0

f
(
0 + (2.008 + 1.984η − 3)2 + 4(−5.062 + 0.003875η + 5)4

)
= arg min

η≥0
ϕ1(η)
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Using the secant method again, we obtain η1 = 0.5000. Then we compute

x2 = x1 − η1∇f(x1) =


4.000
3.000

−5.060


To find x3, we first determine

∇f(x2) =


0.000
0.000

−0.003525


Next we find η2

η2 = arg min
η≥0

f (x2 − η∇f(x2))

= arg min
η≥0

f
(
0.000 + 0.000 + 4(−5.060 + 0.003525η + 5)4

)
= arg min

η≥0
ϕ2(η) = 16.29

Then

x3 =


4.000
3.000

−5.002


Note that the minimizer of f is [4, 3, −5]T .

VIII. PYTHON CODE FOR LINEAR REGRESSION MODEL

Let us consider the following data set

x 1 2 3 4 5

y 3 4 5 6 8

Let us use the simple linear regression model to fit the data, i.e.,

ŷi = α0 + α1xi

We use the least square regression method to find the value of the coefficients. This means
we minimize the expression (also called as cost function)

J =
N∑

i=1
(yi − ŷi)2
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For the simple linear regression analysis, sum of the squared error is given by

J =
N∑

i=1
(yi − α0 − α1xi)2

To determine the values of α0 and α1 that minimizes the SSE, we use the condition

∂J

∂α0
= 0,

∂J

∂α1
= 0

from which we get the equations

n∑
i=1

yi = α0 n + α1

n∑
i=1

xi

n∑
i=1

xiyi = α0

n∑
i=1

xi + α1

n∑
i=1

x2
i

This is a system of linear equations with α0 and α1 as the unknowns. In matrix form, these
equations can be written as


n∑

i=1
xi n

n∑
i=1

x2
i

n∑
i=1

xi


α1

α0

 =


n∑

i=1
yi

n∑
i=1

xiyi

 (7)

We can show that the value of the coefficients are given by

α0 = ȳ − α1x̄

α1 = n
∑

xiyi −∑
xi
∑

yi

n
∑

x2
i − (∑xi)2

For the given x and y, the value of the parameters are obtained as

α0 = 1.6, α1 = 1.2
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A. Gradient Descent Method

Now we will use the gradient descent method to find the value of these parameters (see the
python code below):

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Batch Gradient Descent
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

import numpy as np

# Input the data

x = [ 1 , 2 , 3 , 4 , 5 ]
y = [ 3 , 4 , 5 , 6 , 8 ]

n = len (x )

# Def ine the model y hat = alpha 0+alpha 1 ∗x

y hat = lambda alpha 0 , alpha 1 , x : a lpha 0 + alpha 1 ∗x

# Def ine the square sum : sum i [ y [ i ]− y hat [ i ] ] ˆ 2

de f J (x , y , n , alpha 0 , a lpha 1 ) :
returnValue = 0
f o r i in range (n ) :

returnValue += (y [ i ]− y hat ( alpha 0 , alpha 1 , x [ i ] ) ) ∗ ∗ 2
returnValue = returnValue
re turn returnValue
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# Find the g rad i en t o f the co s t func t i on J f o r a l l i .

de f grad J (x , y , n , alpha 0 , a lpha 1 ) :
grad = np . array ( [ 0 . , 0 . ] )
f o r i in range (n ) :

grad [ 0 ] += −2∗(y [ i ]− y hat ( alpha 0 , alpha 1 , x [ i ] ) )
grad [ 1 ] += −2∗(y [ i ]− y hat ( alpha 0 , alpha 1 , x [ i ] ) ) ∗ x [ i ]

grad = grad
return grad

# Use the g rad i en t descent a lgor i thm

a lpha o ld = np . array ( [ 0 . , 0 . ] )
alpha new = np . array ( [ 1 . , 1 . ] ) # The algor i thm s t a r t s at [ 1 , 1 ]
e ta k = 0.001 # step s i z e
p r e c i s i o n = 0.001
num steps = 0
s k = f l o a t (” i n f ”)

whi l e np . l i n a l g . norm( s k ) > p r e c i s i o n :
num steps += 1
a lpha o ld = alpha new
s k = −grad J (x , y , n , a lpha o ld [ 0 ] , a lpha o ld [ 1 ] )
alpha new = a lpha o ld + eta k ∗ s k

p r i n t (” Local minimum occurs where : ” )
p r i n t (” a lpha 0 =”, alpha new [ 0 ] )
p r i n t (” a lpha 1 =”, alpha new [ 1 ] )
p r i n t (” This took ” , num steps , ” s t ep s to converge ”)
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Local minimum occurs where:
alpha 0 = 1.59943175061
alpha 1 = 1.20015739597
This took 4014 steps to converge
Compare this result with the analytical result.

B. Stochastic Gradient Descent Method

Now we will use the stochastic gradient descent method to find the optimal value of the
parameter.

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Stocha s t i c Gradient Descent

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
import numpy as np

# Input the data
x = [ 1 , 2 , 3 , 4 , 5 ]
y = [ 3 , 4 , 5 , 6 , 8 ]
n = len (x )

# Def ine the model y hat = alpha 0+alpha 1 ∗x
y hat = lambda alpha 0 , alpha 1 , x : a lpha 0 + alpha 1 ∗x

C. Newton’s Method

In this last section we use the Newton’s method to find to find the optimal value of the
regression model parameters. Note that in the Newton’s method we also need Hessian of
the cost function. Since the gradient of the cost function is given by

∂J(ααα)
∂αj

= −2
n∑

i=1

[
yi −

m∑
k=0

αkxik

]
xij
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In case of single variable regression problem, we have m = 0, 1. Therefore

∂J(ααα)
∂α0

= −2
n∑

i=1
[yi − α0 − α1xi1] = −2

n∑
i=1

[yi − ŷi]

∂J(ααα)
∂α1

= −2
n∑

i=1
[yi − α0 − α1xi1] xi1 = −2

n∑
i=1

[yi − ŷi]xi1

The Hessian of the cost function is obtained by the differentiation of this function

∂2J(ααα)
∂α2

0
= 2

n∑
i=1

1 = 2n

∂2J(ααα)
∂α2

1
= 2

n∑
i=1

[xi1] xi1

These two expression can be written in a compact form as

∂2J(ααα)
∂α2

j

= 2
n∑

i=1

m∑
k=0

[δjkxik] xij, xi0 = 1

where

δjk =

 1 j = k

0 j ̸= k

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Python Code For Newton ’ s Method
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
import numpy as np

# Input the data

x = [ 1 , 2 , 3 , 4 , 5 ]
y = [ 3 , 4 , 5 , 6 , 8 ]

n = len (x )

# Def ine the model y hat = alpha 0+alpha 1 ∗x

y hat = lambda alpha 0 , alpha 1 , x : a lpha 0 + alpha 1 ∗x
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# Def ine the square sum : sum i [ y [ i ]− y hat [ i ] ] ˆ 2

de f J (x , y , n , alpha 0 , a lpha 1 ) :
returnValue = 0
f o r i in range (n ) :

returnValue += (y [ i ]− y hat ( alpha 0 , alpha 1 , x [ i ] ) ) ∗ ∗ 2
returnValue = returnValue
re turn returnValue

# Find the g rad i en t o f the co s t func t i on J f o r a l l i .

de f grad J (x , y , n , alpha 0 , a lpha 1 ) :
grad = np . array ( [ 0 . , 0 . ] )
f o r i in range (n ) :

grad [ 0 ] += −2∗(y [ i ]− y hat ( alpha 0 , alpha 1 , x [ i ] ) )
grad [ 1 ] += −2∗(y [ i ]− y hat ( alpha 0 , alpha 1 , x [ i ] ) ) ∗ x [ i ]

grad = grad
return grad

# Find the Hess ian o f the co s t func t i on J f o r a l l i .

de f hes J (x , n ) :
hes = np . array ( [ 0 . , 0 . ] )
f o r i in range (n ) :

hes [ 0 ] += 2 .0
hes [ 1 ] += 2∗(x [ i ] ) ∗ x [ i ]

hes = hes
re turn hes
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# Use the Newton ’ s method algor i thm

a lpha o ld = np . array ( [ 0 . , 0 . ] )
alpha new = np . array ( [ 1 . , 1 . ] ) # The algor i thm s t a r t s at [ 1 , 1 ]
p r e c i s i o n = 0.001
num steps = 0
s k = f l o a t (” i n f ”)

whi l e np . l i n a l g . norm( s k ) > p r e c i s i o n :
num steps += 1
a lpha o ld = alpha new
s k = −grad J (x , y , n , a lpha o ld [ 0 ] , a lpha o ld [ 1 ] )
h k = hes J (x , n)
alpha new = a lpha o ld + ( s k /h k )

p r i n t (” Local minimum occurs where : ” )
p r i n t (” a lpha 0 =”, alpha new [ 0 ] )
p r i n t (” a lpha 1 =”, alpha new [ 1 ] )
p r i n t (” This took ” , num steps , ” s t ep s to converge ”)

Local minimum occurs where:
alpha 0 = 1.5999881956585973
alpha 1 = 1.1999960652195325
This took 108 steps to converge
This result is very close to the analytical result obtained above.

D. Probabilistic Interpretation of Ordinary Least Square

Earlier we solved the least square regression problem using the least square cost function
J . In this section, we will give a set of probabilistic assumptions, under which least squares
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regression is derived as a very natural algorithm. We know that the input and output are
related via the equation

yi =
m∑

j=0
αjxij + ϵi

where ϵi is random noise, i.e, the part of the output that is not explained by the input.
We also assume that ϵi are independently and identically distributed (IID) according to a
Gaussian distribution N(0, σ2). In other words,

ϵi ∼ N(0, σ2)

Then the density of ϵi can be written as

p(ϵi) = 1√
2π σ

e−
ϵ2
i

2σ2

This implies that

p(yi|xi;ααα) = 1√
2π σ

e−

(
yi−

m∑
j=0

αj xij

)2

2σ2

We can also write the distribution of yi as

yi|xi;ααα ∼ N

 m∑
j=0

αjxij, σ2


Now given x and ααα, what is the distribution of yi. The probability of the data is given by
p(y|x,ααα). This quantity is typically viewed a function of y and perhaps x, for a fixed value
of ααα. When we wish to explicitly view this as a function of ααα, we will instead call it the
likelihood function:

L(ααα) = L(ααα; x, y) = p(y|x;ααα)

Note that by the independence assumption on the ϵi’s and hence also the yi’s given the xi’s,
this can also be written

L(ααα) =
n∏

i=1
p(yi|xi;ααα) =

n∏
i=1

1√
2π σ

e−

(
yi−

m∑
j=0

αj xij

)2

2σ2

The principal of maximum likelihood says that we should choose ααα so as to make the data
as high probability as possible. i.e., we should choose ααα to maximize L(ααα). Now we will
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maximize log of the likelihood of the function.

l(ααα) = ln L(ααα) = ln


n∏

i=1

1√
2π σ

e−

(
yi−

m∑
j=0

αj xij

)2

2σ2



=
n∑

i=1
ln

 1√
2π σ

e−

(
yi−

m∑
j=0

αj xij

)2

2σ2


= n ln

(
1√

2π σ

)
− 1

2σ2

n∑
i=1

yi −
m∑

j=0
αjxij

2

Hence, maximizing l(ααα) gives the same answer as minimizing

1
2

n∑
i=1

yi −
m∑

j=0
αjxij

2

which we recognize to be J(ααα), our original least squares cost function.

IX. REGULARIZATION

• Ridge Regression is a technique for analyzing multiple regression data that suffer from
multicollinearity.

• When multicollinearity occurs, least squares estimates are unbiased, but their variances
are large so they may be far from the true value.

• By adding a degree of bias to the regression estimates, ridge regression reduces the
standard errors.

A. Multivariate Linear Regression

In multiple linear regression, we have

yi = α0 + α1xi1 + α2xi2 + · · · + αdxid + Error i = 1, 2, . . . , N
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In matrix form this equation can be written as

y1

y2
...

yN


=



1 x11 x12 · · · x1d

1 x21 x22 · · · x2d

... ... ... . . . ...
1 xN1 xN2 · · · xNd





α0

α1
...

αd


+ Error

Here

y︸︷︷︸
N×1

= x︸︷︷︸
N×d+1

ααα︸︷︷︸
d+1×1

where y is N × 1 column vector, x is N × d + 1 column vector, ααα is d + 1 × 1 column vector.
For multivariate case, the hypothesis set can be written as

h(x) = αααT x

Then the sum of squared error can be written as

Ein(ααα) = 1
N

N∑
n=1

[αααT xn − yn]2 = (xααα − y)T (xααα − y) = 1
N

||xααα − y||2

where

x =



xT
1

xT
2
...

xT
N


, y =



y1

y2
...

yN


Now we will minimize the error term

∇Ein(ααα) = 2
N

xT (xααα − y) = 0

Or,

xT xααα = xT y

Finally we get

ααα = (xT x)−1xT y = x†y

where

x† = (xT x)−1xT

is called pseudo inverse of x.
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B. Effects of Multicollinearity

• Multicollinearity can create inaccurate estimates of the regression coefficients.

• Inflate the standard errors of the regression coefficients, deflate the partial t-tests for
the regression coefficients, give false, nonsignificant, pvalues, and degrade the pre-
dictability of the model.

C. Sources of Multicollinearity

• Data Collection: In this case, the data have been collected from a narrow subspace
of the independent variables.

• Physical constraints of the linear model or population.

• Over Defined Model: Here, there are more variables than observations (p >> n).
If (n >> p) – that is, if n, the number of observations, is much larger than p, the
number of variables – then the least squares estimates tend to also have low variance,
and hence will perform well on test observations.

In the regression setting, the standard linear model

yi = α0 + α1xi1 + α2xi2 + · · · + αdxid + e =
p∑

j=0
αjxij, xi0 = 1

In the case of more than one dependent variable, we have

y = xααα + e

where X is N × d + 1 matrix, ααα is (d + 1) × 1 matrix and y is N × 1 column vector. In
ordinary least squares, the regression coefficients are estimated using the formula

ααα = (xT x)−1xT y = CxT y

where C = xT x is the correlation matrix of independent variables. These estimates are
unbiased so that the expected value of the estimates are the population values. That is,

E[ααα] = ααα
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The variance-covariance matrix of the estimates is

Var-Cov[ααα] = σ2(xT x)−1

Assume that y’s are standardized, so that σ2 = 1. Then we can show that

Var[αj] = rij = 1
1 − R2

j

• R2
j is the R-squared value obtained from regression xj on the other independent vari-

ables.

• In this case, this variance is the VIF.

• As the R-squared in the denominator gets closer and closer to one, the variance (and
thus VIF) will get larger and larger.

• The rule of thumb cut-off value for VIF is 10. Solving backwards, this translates into
an R-squared value of 0.90.

• Hence, whenever the R-squared value between one independent variable and the rest
is greater than or equal to 0.90, you will have to face multicollinearity.

D. Summary

• When p > n, then the OLS method cannot be used. The variance in this case becomes
infinite.

• The variance can be reduced by shrinking (constraining) the estimated coefficient at
the cost of negligible increase in bias.

• The size of the coefficients increases exponentially with increase in model complexity.
This is the problem of overfitting.

• Since there are large number of explanatory variables, it is not necessary that all of
them are associated with the response. Also, it would be difficult to interpret the model
with large number of variables. Hence we need some variable selection method, i.e.,
the method which exclude the irrelevant variables from a multiple regression model.
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• Subset selection (Best subset selection, forward stepwise selection, backward stepwise
selection), shrinkage (Ridge, LASSO, LARS) dimension reduction etc., are some of
the variable reduction method.

E. Shrinkage Method

The shrinkage method shrinks some of the coefficient estimates toward zero. Least squares
fitting procedure estimates α0, α1, . . . , αp using the values that minimize

RSS =
N∑

i=1

yi −
d∑

j=0
αjxij

2

, xi0 = 1

In ridge regression the coefficients are estimated by minimizing a slightly different quantity.
In particular, the ridge regression coefficient estimate α̂̂α̂αR are the values that minimizes

N∑
i=1

yi −
d∑

j=0
αjxij

2

+ λ
d∑

j=1
α2

j = RSS + λ
d∑

j=1
α2

j (8)

The second term is called as shrinkage penalty (also called as l2 penalty). The term is small
when the coefficients α0, α1, . . . , αp are close to zero.

• When λ = 0, the ridge regression will produce the OLS estimates.

• As λ → ∞, the impact of the shrinkage penalty grows, and the ridge regression
coefficient estimates will approach zero.

Ridge regression proceeds by adding a small value, λ, to the diagonal elements of the corre-
lation matrix. This is where ridge regression gets its name since the diagonal of ones in the
correlation matrix may be thought of as a ridge. That is,

αααR = (C + λI)−1xT y

λ is a positive quantity less than one (usually less than 0.3).

Proof: Here we put constraint on the weights, i.e.,

d∑
j=1

α2
j ≤ C
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The we minimize

1
N

(xααα − y)T (xααα − y) subject to αααTααα ≤ C

This is a constrained (inequality) optimization problem. Use the Lagrange method of un-
determined multiplier to get the solution of this problem. Minimize

Ein(ααα) + λ

N
αααTααα

In other words, we are minimizing the augmented error

Eaug(ααα) = Ein(ααα) + λ

N
αααTααα

= 1
N

(xααα − y)T (xααα − y) + λ

N
αααTααα

= 1
N

[
(xααα − y)T (xααα − y) + λαααTααα

]
This is unconstrained problem and we can use quadratic programming to get the solution.
Now the minima of the augmented error is obtained as

∇Eaug(ααα) = xT (xααα − y) + λααα = 0

From here we obtain
αααR = (xT x + λI)−1xT y

The amount of bias in this estimator is given by

E[αααR − ααα] =
[
(xT x + λI)−1xT x − I

]
ααα

and the covariance matrix is given by

Var-Cov[αααR] = (xT x + λI)−1xT x(xT x + λI)−1

It can be shown that there exists a value of k for which the mean squared error (the variance
plus the bias squared) of the ridge estimator is less than that of the least squares estimator.

F. Weight Decay

We have to minimize the following cost function for ridge regression

J =
N∑

i=1

yi −
d∑

j=0
αjxij

2

+ λ
d∑

j=1
α2

j
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The gradient of this function is given by

∂J

∂αj

= −2
N∑

i=1
xij

[
yi −

d∑
k=0

αkxik

]
+ 2λαj

Now we use the gradient descent algorithm to find the optimal value of the parameters.
Here we start with some initial ααα and update the parameters according to the rule

αi = αi−1 − ηi−1 ∂J

∂αj

Substituting the value of the derivative, we obtain

αi
j = αi−1

j + 2ηi−1
N∑

i=1

[
yi −

d∑
k=0

αkxik

]
xij − 2ηi−1λαi−1

j

Hence

αi
j = αi−1

j (1 − 2ηi−1λ) + 2ηi−1
N∑

i=1

[
yi −

p∑
k=0

αkxik

]
xij

which is similar to the linear regression.

X. LOGISTIC REGRESSION

The dependent variable in this case is binary or discrete and use linear regression algorithm
to try to predict y given x. For example

• Given occupation, age, education, income, loan amount, etc., what is the probability
that a homeowner will default on his mortgage payments?

Note that in this case, yi ∈ {0, 1}. To build a model, let us first try the simple linear
regression model.

yi = α0 + α1xi + ϵi (9)

Now the conditional expectation of yi given xi, E[yi|xi], can be interpreted as the conditional
probability that the event will occur given xi, that is, Pr (yi = 1|xi). To obtain the unbiased
estimator, we assume that

E[ϵi] = 0

Hence

E[yi|xi] = α0 + α1xi (10)
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Let yi = 1 is probability p of occurrence of an event and 1 − pi is the probability that
yi = 0. That is, yi follows the Bernoulli probability distribution. Now, by the definition of
mathematical expectation, we obtain:

E[yi] = 1 · pi + 0(1 − pi) = pi (11)

Comparing (10) and (11), we obtain

E[yi|xi] = α0 + α1xi = pi

Since the probability pi must lie between 0 and 1, we have the restriction

0 ≤ E[yi|xi] ≤ 1

Expression (9) is also called as linear probability model (LPM). The variance of yi is given
by

Var[yi] = pi(1 − pi) (12)

From here we can see that the variance is a function of the mean. Therefore the variance
of ϵi ultimately depends on the values of x and hence is not homoscedastic. In case if there
are m explanatory variables, we may write the probability of an event as

pi = αααT x =
m∑

j=0
αjxij, as before xi0 = 1

Since yi ∈ {0, 1} and hence we cannot use the simple OLS method (LPM) because when
the event is very likely or very unlikely, the response may well be a probability larger than
1 or smaller than 0, respectively.

A. Non-Normality of the Disturbances ϵi

If we write (9) as
ϵi = yi − α0 − α1xi

Now

ϵi = 1 − α0 − α1xi, when yi = 1, pi

ϵi = −α0 − α1xi, when yi = 0, 1 − pi

Hence, ϵi cannot be assumed to be normally distributed; they follow the Bernoulli distribu-
tion. The nonfulfillment of the normality assumption may not be so critical as it appears
because we know that the OLS point estimates still remain unbiased.
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B. Logistic Function

To overcome the difficulty of LPM, we will use the logistic or sigmoid function and is given
by

p(z) = p(αααT x) = ez

1 + ez

where

z = αααT x = α0 +
m∑

j=1
αjxj

and therefore

zi =
m∑

j=0
αjxij, xi0 = 1

If there is only one example (x, y), then

zi =
1∑

j=0
αjxij = α0 + α1xi1, xi0 = 1

Notice that p(z) tends towards 1 as z → ∞, and p(z) tends towards 0 as z → − ∞.
Moreover, p(z), is always bounded between 0 and 1. This equation may be rewritten as

ln
(

p

1 − p

)
= αααT x

The logarithm of the odds ratio
(

p
1−p

)
is known as a logit function. If

p

1 − p
= 10 ⇒ p = 0.909

Let us now take the derivative of the sigmoid function

p′(z) = d

dz

(
ez

1 + ez

)
= (1 + ez)ez − ez · ez

(1 + ez)2

= ez

(1 + ez)2 = p(z)
1 + ez

= p(z)(1 − p(z))

Let us now fit the parameters via the maximum likelihood estimation.

C. Maximum Likelihood Estimation

To build the maximum-likelihood function, we observe that yi is the realization of a Bernoulli
variable, which may be regarded as a binomial variable when only one experiment is carried
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out. Hence

p(y = 1|x,ααα) = p

p(y = 0|x,ααα) = 1 − p

Note that this can be written more compactly as

p(yi|xi, αi) = pyi
i (1 − pi)1−yi

The probability pi depends on observation xi and parameters ααα. We assume the indepen-
dence of the errors, so observations are independent and the likelihood function is just the
product of individual probabilities:

L =
n∏

i=1
pyi

i (1 − pi)1−yi

The task of maximizing L can be somewhat simplified by taking its logarithm:

ln L = l(x,ααα) =
n∑

i=1
[yi ln(p(xi)) + (1 − yi)[ln(1 − p(xi))]]

=
n∑

i=1
ln[1 − p(xi)] +

n∑
i=1

yi ln
[

p(xi)
1 − p(xi)

]

=
n∑

i=1
ln

 1

1 + exp
(

m∑
j=0

αjxij

)
+

n∑
i=1

yi

 m∑
j=0

αjxij



= −
n∑

i=1
ln
1 + exp

 m∑
j=0

αjxij

+
n∑

i=1
yi

 m∑
j=0

αjxij


Now our aim is to maximize the log-likelihood. To do that we will use the gradient descent
method. The update rule in this case can be written as

αααi = αααi−1 + ηi−1∇l(αααi−1)

Note the positive rather than negative sign in the update formula, since we’re maximizing,
rather than minimizing, a function now. In case if we have only one training example (x, y)
and ααα = {α0, α1}, then

l(x,ααα) = − ln
[
1 + exp

(
αααT x

)]
+ y(αααT x)

= − ln [1 + exp (α0 + α1x)] + y[α0 + α1x]
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Therefore

∂l

∂α0
= − exp (α0 + α1x)

1 + exp (α0 + α1x) + y = y − p(x)

∂l

∂α1
= − exp (α0 + α1x)

1 + exp (α0 + α1x) x + y x = [y − p(x)]x

These two equations can be combined into a single equation as

∂l

∂αj

= [y − p(x)]xj, j = 0, 1

If there are n examples, then

∂l

∂αj

=
n∑

i=1
[yi − p(xi)]xij

Hence the update rule (in ith iteration) according to the gradient descent method can be
written as

αi
j = αi−1

j + 2ηi−1
n∑

i=1
[yi − p(xi)]xij

This is identical to the LMS update rule, but this is not the same algorithm, because p(xi)
is now defined as a non-linear function of αααT xi. The update rule according to the Newton’s
method can be written as

αααi = αααi−1 − ∇l(αααi−1)
∇2l(αααi−1)

where ∇2l(αααi−1) is Hessian of the matrix. When Newton’s method is applied to maximize
the logistic regression log likelihood function l(ααα), the resulting method is also called Fisher

scoring.

D. Summary Of Logistic Regression

• The model consists of a vector ααα in n-dimensional feature space.

• For a point x in feature space, project it onto ααα to convert it into a real number z in
the range in the range −∞ to +∞

z = αααT x = α0 + α1x1 + α2x2 + · · · + αnxn

• Map z to the range 0 to 1 using the logistic function

p = ez

1 + ez
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• Overall, logistic regression maps a point x in n-dimensional feature space to a value
in the range 0 to 1.

• Need to optimize ααα so the model gives the best possible reproduction of training set
labels possible reproduction of training set labels. On really large data sets, may use
stochastic gradient descent method.
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Quadratic Programming

XI. QUADRATIC PROGRAMMING

In this chapter we will discuss the steepest descent method for quadratic programming. A
quadratic function is of the form

f(x) = 1
2xT Qx − bT x

where Q ∈ Rm×n is a symmetric positive define matrix, b ∈ Rn and x ∈ Rn. The unique
minimizer of f can be found by setting the gradient of f to zero, where

∇f = Qx − b

and Hessian of f is
∇2f = Q > 0

Let us define
g = ∇f

Then, for the steepest descent algorithm for the quadratic function can be represented as

xi+1 = xi − ηigi

where

ηi = arg min
η≥0

f(xi − ηgi)

= arg min
η≥0

(1
2(xi − ηgi)T Q(xi − ηgi) − bT (xi − ηgi)

)

Now assuming that gi ̸= 0, for if gi = 0, then xi = x∗ and the algorithm stops. Since ηi ≥ 0
is a minimizer of

ϕi(η) = f(xi − ηgi)

We obtain
dϕi

d(η) = (xi − ηgi)T Q(−gi) − bT (−gi) = 0

Or, equivalently
ηgT

i Qgi = (xT
i Q − bT )gi
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Since

gi = Qx − b

Hence

gT
i = xT Q − bT

Hence

ηi = gT
i gi

gT
i Qgi

In summary, the method of steepest descent for the quadratic programming takes the form

xi+1 = xi − gT
i gi

gT
i Qgi

gi

where

gi = ∇f(xi) = Qx − b

XII. QUASI-NEWTON’S METHOD

We know that the update rule according to Newton’s method (for unit step-size) is given by

xi = xi−1 − ∇f(xi−1)
∇2f(xi−1)

= xi−1 − g(xi−1)
g′(xi−1)

where

g(xi−1) = ∇f(xi−1)

If step size is not unit, then

xi = xi−1 − ηi−1
g(xi−1)
g′(xi−1)

where ηi−1 is chosen to ensure that

f(xi+1) < f(xi)

We may choose η as

ηi = arg min
η≥0

f

(
xi − g(xi)

g′(xi)

)

A computational drawback of Newton’s method is the need to evaluate the inverse of Hessian
matrix, i.e., g′(xi−1)−1. To avoid the computation of g′(xi−1)−1, the quasi-Newton methods
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use an approximation to g′(xi−1)−1 in place of true inverse.

[1] Wei-Ta Chu, https://www.cs.ccu.edu.tw/˜wtchu/courses/2014s_OPT/Lectures/

Chapter%208%20Gradient%20Methods.pdf.
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Constrained Optimization

XIII. CONSTRAINED OPTIMIZATION

In this lecture we will discuss the constrained optimization problem. In general, the con-
strained optimization problem in mathematical form can be written as

min
x∈C

f(x), C ⊆ Rn

Furthermore, the constraint set can be represented using a set of equality and inequality
constraints:

min
x∈Rn

f(x)

such that

gi(x) = 0, i = 1, 2, . . . , p

hj(x) ≤ 0, j = 1, 2, . . . , q

Recall that in an unconstrained problem, a necessary condition for a point to be a local
minimizer of a function of interest is simply that the gradient of the function is zero. How-
ever, in a constrained problem setting, it is possible that the gradient of the given function
is non-zero at every point that satisfies the specified constraints. First we will discuss the
case of equality constraint. Then in the later section, we will discuss the case of inequality
constraint.

A. Lagrange Method of Undetermined Multiplier

This method is also known as Karush-Kuhn-Tucker (KKT) Conditions for equality con-
straint. For a function for single variable f(x), there is no constrained optimization problem.
In case of function of one variable there is only one independent variable x and hence we
cannot put constraint on it. Let us try to maximize or minimize a function of two variable
f(x, y) subject to the condition that (x, y) also satisfies an equation

g(x, y) = c

where c is a constant.
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• Here x and y are not independent variable, but are constrained by the relation g(x, y) =
c. The set of (x, y) is a level curve for g.

• Thus we have g(x, y) = c is a curve and we maximize or minimize f along that curve.

To do this, first solve g(x, y) for one variable, say y(x). Then plug that value in f(x, y), i.e.,
we have f(x, y(x)). Now it is only a function of x. Then finally differentiating it with respect
to x and setting it equal to zero as we do in the one variable calculus. Since f = f(x, y(x)),
we have by chain rule

df = ∂f

∂x
+ ∂f

∂y

dy

dx
= 0 (13)

Since g(x, y) = c, we have
dg = ∂g

∂x
dx + ∂g

∂y
dy = 0,

or
dy

dx
= −∂g/∂x

∂g/∂y

Using this value of dy/dx in (13), we obtain

∂f

∂x
− ∂f

∂y

∂g/∂x

∂g/∂y
= 0

or
∂g

∂y

∂f

∂x
− ∂f

∂y

∂g

∂x
= 0 (14)

Let us illustrate this method with an example.

Ex: Let f(x, y) = x2+y2 and g(x, y) : x+2y = 1. Thus we have to maximize f(x, y) = x2+y2

subject to the constraint x + 2y = 1. To solve this equation, we have x = 1 − 2y. Hence

f(x, y) = x2 + y2 = (1 − 2y)2 + y2,

and maximize f with respect to y. Using equation (14), we have

4x − 2y = 0 or y = 2x

Using this value of y in the constraining equation x + 2y = 1, we obtain

x + 4x = 1 or x = 1
5

and y = 2/5. Thus the point (x, y) = (1/5, 2/5) gives the stationary point or critical point.
However, this procedure becomes very tedious for function of more than two variables.
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1. Lagrange Method

A systematic way to solve such problems is the method of Lagrange undetermined multiplier.
Since we have a function of two variable f(x, y), we know from elementary calculus that

df = ∂f

∂x
dx + ∂f

∂y
dy

Since x and y are not independent variable, we cannot put fx = 0 and fy = 0. We also have

dg = ∂g

∂x
dx + ∂g

∂y
dy = 0

Now to maximize this function we will define a new constant λ, also known as Lagrange un-

dermined multiplier. Multiplying dg by an unknown number λ and subtracting (addition
or subtraction does not change the final result) it from df we obtain

d(f − λg) =
(

∂f

∂x
− λ

∂g

∂x

)
dx +

(
∂f

∂y
− λ

∂g

∂y

)
dy = 0

Now choose λ such that

∂f

∂x
− λ

∂g

∂x
= 0, (15)

∂f

∂y
− λ

∂g

∂y
= 0, (16)

where λ is such that it satisfies the given constraint g(x, y) = c. Let us try to solve Ex
(1) using method of Lagrange undetermined multiplier. We have f(x, y) = x2 + y2 and
g(x, y) = x + 2y = 1. From (15) and (16), we have

2x − λ = 0,

2y − 2λ = 0.

From last two equations we have x = λ/2 and y = λ. Now choose λ such that g(x, y) = 1 is
satisfied. Thus the constraint

x + 2y − 1 = 0

is satisfied only when x = λ/2 and y = λ or

λ

2 + 2λ = 1

which in turn yield λ = 2/5. Using this value of λ, we have x = 1/5 and y = 2/5. Thus we
obtain the same result using Lagrange undetermined multiplier. Thus one can get exactly
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the same expression using the method of Lagrange undetermined multiplier. From (15), we
have

λ = ∂f/∂x

∂g/∂x

and putting this value in expression (16), we obtain

∂f

∂y
− ∂g

∂y

∂f/∂x

∂g/∂x
= 0

which in turn yield
∂f

∂y

∂g

∂x
− ∂g

∂y

∂f

∂x
= 0

So it is the same expression (14).

Alternatively, one can define

F (x, y) = f(x, y) − λg(x, y)

This is sometimes written as

F (x, y) = f(x, y) + λg(x, y)

We will see that the sign does not matter. Then we set

∂F

∂x
= 0 and ∂F

∂y
= 0,

and finally solve these two equations together with the constraint equation to find x and y.
Now the requirement that f(x, y) is an extremum and the constraint equation lead to two
differential relations:

df = ∂f

∂x
dx + ∂f

∂y
dy = 0

dg = ∂g

∂x
dx + ∂g

∂y
dy = 0

Rearranging and taking ratios, we find that fx/gx = fy/gy, and we call this ratio λ:

fx

gx

= fy

gy

= λ

Rearranging again, we obtain the fundamental equations of the method,

∂f

∂x
− λ

∂g

∂x
= 0 and ∂f

∂y
− λ

∂g

∂y
= 0

again we obtain the same expressions (15) and (16).
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B. General Case

For more than one variable, the condition for constrained maxima and minima at any point
P becomes

∇f |P = λ∇g|P

Here ∇ is gradient and point P where this equation holds is said to be a critical point. For
function of three variable f = f(x, y, z) and g = g(x, y, z) this equation becomes

∂f

∂x
− λ

∂g

∂x
= 0, (17)

∂f

∂y
− λ

∂g

∂y
= 0, (18)

∂f

∂z
− λ

∂g

∂z
= 0, (19)

C. Geometrical Significance of Lagrange Undermined Multiplier

Let us consider a function of two variable f(x, y). As shown in Fig. the closed loops are
contours of f(x, y), i.e. curves of f(x, y) = constant, in the xy plane. The bold curve is the
graph of the constraint equation g(x, y) = c. Assume that f increases toward the center of
the figure. The problem can be restated as follows:

• To find an extremum of subject to the constraint g(x, y) = c, move along the constraint
curve until we arrive at the point P at which the constraint curve is tangent to the
local contour of f(x, y).

• One can draw a contour through any point x, y.
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• If we move forward or backward from that point along the constraint curve, the value
of f(x, y) will decrease from its value at P , so point P is the desired maximum of f .

To show that this condition is equivalent to the Lagrange multiplier method, we first note
that if the two curves are tangent at P , the normals to the two curves are parallel at P . To
find the normal to a curve, we have

df = ∂f

∂x
dx + ∂f

∂y
dy

=
(

î
∂f

∂x
+ ĵ

∂f

∂y

)
·
(̂
idx + ĵdy

)
= ∇f · dr = |∇f | |dr| cos θ

• The direction of ∇f is the direction (corresponding to θ = 0) in which f is increasing
most rapidly, i.e. the direction in which the directional derivative df/dr is largest.

• This is the direction normal to the local contour of f . The arrow in the figure represents
this direction.

• Similarly, ∇g is a vector normal to the curve g(x, y) = c.

• Since ∇f |P is perpendicular to the surface. Also, ∇g|P is perpendicular to the surface,
we have proved ∇f |P is parallel to ∇g|P .

Hence, the curves f(x, y) = k and g(x, y) = c are tangent to each other, ∇f is parallel to
∇g. This means that the two gradient vectors are proportional to each other, with some
constant of proportionality:

∇f = constant × ∇g

îfx + ĵfy = constant ×
(̂
igx + ĵgy

)
If we call the constant λ, the second of these relations can be rearranged to give

fx − λgx = 0

fy − λgy = 0

For function of more than two variables, the constrained curve may become the constrained
surface. The method of Lagrange undetermined multiplier is easily generalized to functions
of more than two variables, as long as the number of constraints is less than the number
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of variables. For example, to find the extrema of f(x, y, z) subject to two constraints,
g1(x, y, z) = c1 and g2(x, y, z) = c2, the equations become

∂f

∂x
− λ1

∂g1

∂x
− λ2

∂g2

∂x
= 0

∂f

∂y
− λ2

∂g1

∂y
− λ2

∂g2

∂y
= 0

∂f

∂x
− λ1

∂g1

∂z
− λ2

∂g2

∂z
= 0,

where λ1 and λ2 are Lagrange undetermined multiplier. These three equations, together
with the two constraints, may be solved to give λ1, λ2, x, y and z.

• The Lagrange method of undetermined multiplier is used to find the stationary points
of function of more than two variables, subject to several constraints. Also number of
constraint is smaller than number of variables.

D. Case of Several Constraints

If a surface S is defined by a number of constraints, namely,

g1(x1, x2, . . . , xn) = c1

...

gk(x1, x2, . . . , xn) = ck

Then f has a maximum or minimum at x0 on S, there must exist constraints λ1, λ2, . . . , λk

such that
∇f |x0

= λ1 ∇g1|x0
+ λ2 ∇g2|x0

+ · · · + λk ∇gk|x0

Here ∇g1|x0
· · · ∇gk|x0

are linearly independent.

XIV. KKT OPTIMALITY CONDITIONS FOR INEQUALITY CONSTRAINTS

Let us minimize a function f(x) subject to the constraints

min f(x) f : Rn → R

Subject to g(x) = 0 h : Rn → Rm, m ≤ n

h(x) ≤ 0 g : Rn → Rp, p ≤ n
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KKT Condition: Let x∗ be a local minimizer of the above equation. Then there exists a
set of Lagrange multipliers µ1, . . . , µp ∈ R and λ1, . . . , λq ∈ R such that

gi(x∗) = 0, i = 1, 2, . . . , p

hj(x∗) ≤ 0, j = 1, 2, . . . , q

λj ≥ 0, j = 1, 2, . . . , q

λjhj(x∗) = 0

∇f(x∗) +
p∑

i=1
µi∇gi(x∗) +

q∑
j=1

λj∇hj(x∗) = 0

These are called the Karush-Kuhn-Tucker (KKT) conditions, with the fourth condition
known as the complementary slackness condition. We have so far seen that KKT conditions
are necessary for local optimality of a solution to a constrained optimization problem. It
turns out that, under specific assumptions on the function f being optimized and the con-
straint functions gi’s and hj’s, these conditions are also sufficient for optimality. This is the
case, for example, when f is a convex function and each gi and hj is affine.

Ex: Let us consider the following inequality constraint problem

f(x) = x1 + x2

h(x) = x2
1 + x2

2 − 1 ≤ 0

Then using the KKT condition

∂f

∂x1
+ λ

∂h

∂x1
= 0

∂f

∂x2
+ λ

∂h

∂x2
= 0

From here, we obtain

1 + 2λx1 = 0

1 + 2λx2 = 0

Then using the fourth KKT condition, we obtain

λh(x∗) = λ(x2
1 + x2

2 − 1) = 0
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This in turn implies that
x2

1 + x2
2 = 1

and hence
λ = 1√

2

XV. SUPPORT VECTOR MACHINES

In case of logistic regression, our hypothesis was

hααα(x) = g(αααT x) = 1
1 + e−αααT x

Then we found the probability

p(y = 1|x,ααα) = hααα(x)

p(y = 0|x,ααα) = 1 − hααα(x)

These two equation can be compactly written as

p(y|x,ααα) = [hααα(x)]y[1 − hααα(x)]1−y

Then we maximize the log-likelihood function to obtain the parameters (using stochastic
gradient descent method). Since

hααα(x) = g(αααT x)

We would predict 1 on input x if
hααα(x) ≥ 0.5

This in turn implies that
αααT x ≥ 0

The larger the αααT x is, the larger also is

hααα(x) = p(y = 1|x,ααα)

Thus our classification would be a confident one if

y = 1 if αααT x >> 0

y = 0 if αααT x << 0
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Support vector machines are an example of a linear two-class classifier. For convenience we
assume the labels are +1 (positive examples) or −1 (negative examples). In what follows
boldface x denotes a vector with components xi. The notation xi will denote the ith vector
in a data set

{xi, yi}, i = 1, 2, . . .

where yi is the label (y ∈ {−1, 1}) associated with xi. The objects xi are called patterns
or examples. The dot product between two vectors, also referred to as an inner product or
scalar product, defined as

wT x =
∑

i

wixi

A linear classifier is based on a linear discriminant function of the form

g(x) = wT x + b

The vector w is known as the weight vector, and b is called the bias. Consider the case b = 0
first. The set of points x such that

wT x = 0

are all points that are perpendicular to w and go through the origin – a line in two dimen-
sions, a plane in three dimensions, and more generally, a hyperplane. The bias b translates
the hyperplane away from the origin (plays the role of α0 in logistic regression). The hyper-
plane

{x : g(x) = wT x + b = 0}

divides the space into two.

• The sign of the discriminant function g(x) denotes the side of the hyperplane a point
is on.

• The boundary between regions classified as positive and negative is called the decision
boundary of the classifier.

• The decision boundary defined by a hyperplane is said to be linear because it is linear
in the input examples.

• A classifier with a linear decision boundary is called a linear classifier. Conversely,
when the decision boundary of a classifier depends on the data in a non-linear way,
the classifier is said to be non-linear.

68



FIG. 7. Positive and Negative Examples.

Now classify unknown x as
g(x) = sign(wT x + b)

where

g(z) =

 1 if z ≥ 0
−1 otherwise

Then, constrain, for all plus sample vectors:

g(x+) = wT x+ + b ≥ 1

And for all minus sample vectors

g(x−) = wT x− + b ≤ −1

A. Distance Between The Street

First we will show that w is perpendicular to the plane. We know that

wT xn + b = +1, n = 1, 2, . . . , N

wT xn + b = −1

Take two points x and x′′ on the plane. Then

wT x + b = 0

wT x′′ + b = 0
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Therefore
wT (x − x′′) = 0

Hence w is perpendicular to every vector on the plane. Now take any point x on the plane
and compute the distance between x and xn. Since

ŵ = w
||w||

Hence

Distance = |ŵT (xn − x)|

= 1
||w||

|ŵT xn − ŵT x|

= 1
||w||

|ŵT xn + b − ŵT x − b| = 1
||w||

Hence
Distance = max 1

||w||
With the condition that there are no data points between planes. Thus the final problem
can be written as

max 1
||w||

subject to min
n=1,2,...,N

|ŵT x + b| = 1

Note that constraint has minimum in it. Instead of maximizing this quantity, we will
minimize

min ||w||2

2
Squaring is done for mathematical convenience. In order to maximize the margin, we thus
need to minimize ||w||2

2 . The constraint now is

yn

(
wT xn + b

)
≥ 1

Where yn is 1 for pluses and −1 for minuses. Here

wT xn + b ≥ +1 when yn = +1

wT xn + b ≤ −1 when yn = −1

From here we get
yn

(
wT xn + b

)
− 1 ≥ 0, n = 1, 2, . . . , N
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and for points in the streets
yn

(
wT xn + b

)
− 1 = 0

• Support vectors are the data points that lie closest to the decision surface (or
hyperplane).

• SVM maximize the margin around the separating hyperplane.

• Support vectors are the elements of the training set that would change the
position of the dividing hyperplane if removed.

• Support vectors are the critical elements of the training set.

• This becomes a Quadratic programming problem that is easy to solve by stan-
dard methods.

B. Quadratic Programming Problem

Minimize ||w||2
2 such that

yn

(
wT xn + b

)
− 1 ≥ 0

This is a constrained optimization problem. It can be solved by the Lagrangian multiplier
method. The Lagrangian is

LP = ||w||2

2 −
N∑

n=1
αn

[
yn

(
wT xn + b

)
− 1

]
where αn ≥ 0. The right hand side of this equation may be written as

LP = ||w||2

2 −
N∑

n=1
αnyn

(
wT xn + b

)
+

N∑
n=1

αn

Here N is number of training points. From the property of derivatives

∂LP

∂w
= w −

∑
n

αnynxn = 0

∂LP

∂b
=
∑

n

αnyn = 0 (20)

From here we get
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FIG. 8. Support vector machine and separation of margin.

w =
∑

n

αnynxn∑
n

αnyn = 0

We will actually solve the optimization problem by now solving for the dual of this original
problem.

C. The Lagrangian Dual Problem

Instead of minimizing over w, b subject to constraints involving α’s, we can maximize over
α (the dual variable) subject to the relations obtained previously for w and b.

• Our solution must satisfy the relations (20).

• By substituting for w and b back in the original equation we can get rid of the depen-
dence on w and b.

• Note that weights w are a linear combination of the training inputs and the training
outputs, xn and yn and the values of α. We will now solve for the α’s by differentiating
the dual problem wrt α, and setting it to zero.

• Most of the α’s will turn out to have the value zero. The non-zero α’s will correspond
to the support vectors.
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Primal Problem: We have to minimize

LP = min ||w||2

2 −
N∑

n=1
αnyn

(
wT xn + b

)
+

N∑
n=1

αn, αn ≥ 0

with

w =
∑

n

αnynxn and
∑

n

αnyn = 0

Then dual problem can be written as

LP = min
w, b

1
2wT w −

N∑
n=1

αnyn

(
wT xn + b

)
+

N∑
n=1

αn, αn ≥ 0

= min
w, b

1
2
∑

n

wT αnynxn −
∑

n

wT αnynxn +
∑

n

αn

This in turn can be converted to dual problem as

LD = max
ααα

N∑
n=1

αn − 1
2

N∑
n=1

N∑
m=1

ynymαnαmxT
n xm

= min
ααα

1
2

N∑
n=1

N∑
m=1

ynymαnαmxT
n xm −

N∑
n=1

αn

= min
ααα

1
2αααT



y1y1xT
1 x1 y1y2xT

1 x2 · · · y1yNxT
1 xN

y2y1xT
2 x1 y2y2xT

2 x2 · · · y2yNxT
2 xN

... ... . . . ...
yNy1xT

Nx1 yNy2xT
Nx2 · · · yNyNxT

NxN


ααα − 1Tααα

subject to

yTααα = 0 0 ≤ ααα < ∞

Note that we have removed the dependence on w and b.

• The Karush-Kuhn-Tucker theorem: the solution we find here will be the same as the
solution to the original problem.

• But why are we doing this? Why not just solve the original problem?

• Because this will let us solve the problem by computing the just the inner products
of xn, xm (which will be very important later on when we want to solve non-linearly
separable classification problems).
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Remark: Let’s take a more careful look at equation

w =
∑

n

αnynxn

which gives the optimal value of w in terms of the optimal value of ααα. Suppose we’ve fit
our model’s parameters to a training set, and now wish to make a prediction at a new point
input x. We would then calculate wT x + b, and predict y = 1 if and only if this quantity is
bigger than zero. This equation can also be written:

wT x + b =
(∑

n

αnynxn

)T

x + b

=
∑

n

αnyn(xn · x) + b (21)

Hence, if we’ve found the αn’s, in order to make a prediction, we have to calculate a quantity
that depends only on the inner product between x and the points xn in the training set.
Moreover, we saw earlier that the αn’s will all be zero except for the support vectors. Thus,
many of the terms in the sum above will be zero, and we really need to find only the inner
products between x and the support vectors (of which there is often only a small number)
in order to calculate (21) and make our prediction.

1. The Quadratic Programming

The dual problem can be written as

LD(ααα) = min
ααα

1
2αααT Qααα − 1Tααα subject to yTααα = 0, ααα ≥ 0

The quadratic programming will give us α1, α2, . . . , αN . Because of the KKT condition most
of the ααα’s are zero. Then we can find

w =
∑

xn∈SV
αnynxn

Then solve for b using any support vector using the equation

yn(wT xn + b) = 1
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D. Inner Product and Nonlinear Transformation

We have

LD(ααα) =
N∑

n=1
αn − 1

2ynymαnαmxT
n xm

=
N∑

n=1
αn − 1

2ynymαnαm(xn · xm)

The claim is that this function will be maximized if we give nonzero values to ααα’s that
correspond to the support vectors, ie, those that matter in fixing the maximum width margin.
Note first from the constraint condition that all the ααα’s are positive (KKT condition). Now
let’s think about a few cases.

1. If two features xi, xj are completely dissimilar (orthogonal), their dot product is 0,
and they don’t contribute to LD.

2. If two features xi, xj are completely alike, their dot product is 0. There are 2 subcases.

Subcase 1: Both xi and xj predict the same output value yi (either +1 or −1).
Then yiyj is always 1, and the value of αiαjyiyjxixj will be positive. But this would
decrease the value of L (since it would subtract from the first term sum). So, the
algorithm downgrades similar feature vectors that make the same prediction.

Subcase 2: xi and xj make opposite predictions about the output value yi (ie,
one is +1, the other −1), but are otherwise very closely similar: then the product
αiαjyiyjxixj is negative and we are subtracting it, so this adds to the sum, maximizing
it. This is precisely the examples we are looking for: the critical ones that tell the two
classes apart.

E. Nonlinear SVM

In this section we are going to discuss the nonlinearly separable case. For nonlinear case, we
get linear separation by mapping the data to a higher dimensional space. The following set
can’t be separated by a linear function, but can be separated by a quadratic one (see Fig.
11). So if we map
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FIG. 9. Two similar xi, xj vectors that predict different classes tend to maximize the width.

FIG. 10. Two vectors that are similar but predict the same class are redundant.

x 7−→ {x2, x}

we gain linear separation. Thus the idea is to make a transformation from X space to Z

space. So the Lagrangian finally becomes

LD(ααα) = max
N∑

n=1
αn − 1

2

N∑
n=1

N∑
m=1

ynymαnαmxT
n xm

= max
N∑

n=1
αn − 1

2

N∑
n=1

N∑
m=1

ynymαnαmzT
n zm, αn ≥ 0

subject to
N∑

n=1
αnyn = 0

FIG. 11. Nonlinear separable case.
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The functional margin of (w, b) with respect to the training example in this case becomes

g(z) = sign(wT z + b)

where
w =

∑
zn∈SV

αnynzn

and to find b, take any support vector

ym(wT zm + b) = 1

F. Inner Product and Kernel Method

Given two points x, x′ ∈ X, we define

zT z′ = K(x, x′)

• If there is a kernel function K such that K(x, x′) = Φ(x) · Φ(x′), then we do not need
to know or compute Φ at all!!

• Note that the kernel function defines inner products in the transformed space. Or, it
defines similarity in the transformed space.

So, the function we end up optimizing is:

LD(ααα) = max
N∑

n=1
αn − 1

2

N∑
n=1

N∑
m=1

ynymαnαmK(xn, xm)

Ex: Let
x = (x1, x2)

and
z = Φ(x) = (1, x1, x2, x2

1, x2
2, x1x2)

Then

K(x, x′) = zT z′ = Φ(x) · Φ(x′) =
(

1 x1 x2 x2
1 x2

2 x1x2

)



1
x′

1

x′
2

x′2
1

x′2
2

x′
1x

′
2


= 1 + x1x

′
1 + x2x

′
2 + x2

1x
′2
1 + x2

2x
′2
2 + x1x

′
1x2x

′
2
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The above equation may also be written as (for x = (x1, x2))

K(x, x′) = (1 + xT x′)2 = (1 + x1x
′
1 + x2x

′
2)2

= 1 + 2x1x
′
1 + 2x2x

′
2 + x2

1x
′2
1 + x2

2x
′2
2 + 2x1x

′
1x2x

′
2

This is again an inner product. Note that the Φ(x) in this case becomes

z = Φ(x) = (1,
√

2 x1,
√

2 x2, x2
1, x2

2,
√

2 x1x2)

This is an example of polynomial kernel. In general

K(x, x′) = (1 + xT x′)Q

can also be written in scale adjusted form as

K(x, x′) = (a xT x′ + b)Q

Kernel of this form does corresponds to inner product in higher space. Evaluating K only
requires one addition and one exponentiation more than the original dot product.

• Intuitively, if Φ(x) and Φ(x′) are close together, then we might expect K(x, x′) =
Φ(x)T Φ(x′) to be large.

• Conversely, if Φ(x) and Φ(x′) are far apart – say nearly orthogonal to each other
– then K(x, x′) = Φ(x)T Φ(x′) will be small. So, we can think of K(x, x′) as some
measurement of how similar are Φ(x) and Φ(x′), or of how similar are x and x′.

G. Gaussian Kernel

Let

K(x, x′) = exp
(

−|x − x′|2

2σ2

)

This is a reasonable measure of x and x′’s similarity, and is close to 1 when x and x′ are
close, and near 0 when x and x′ are far apart. Can we use this definition of K as the kernel
in an SVM? In this particular example, the answer is yes. This kernel is called the Gaussian
kernel, and corresponds to an infinite dimensional feature mapping Φ.
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H. Infinite Dimensional Case – Radial Basis Function

Let us consider an inner product in infinite dimensional Z space.

K(x, x′) = e−γ|x−x′|2

This kernel (also called as radial basis function) corresponds to inner product in infinite
dimensional space. Let us consider the one dimensional case

K(x, x′) = e−|x−x′|2 = e−x2
e−x′2

e2xx′

= e−x2
e−x′2

∞∑
k=0

(
√

2)k(
√

2)k(x)k(x′)k

k!

This is an inner product in infinite dimensional space.

I. Regularization and the Non-Separable Case

[1] Harikrishna Narasimhan, http://drona.csa.iisc.ernet.in/˜e0270/Jan-2015/Tutorials/

lecture-notes-2.pdf.

[2] Harikrishna Narasimhan, http://drona.csa.iisc.ernet.in/˜e0270/Jan-2015/Tutorials/

lecture-notes-3.pdf.

[3] James Stewart, Calculus 6th Ed.

[4] Asa Ben-Hur and Jason Weston, A User’s Guide to Support Vector Machines

http://pyml.sourceforge.net/doc/howto.pdf.
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Random Search Methods

XVI. RANDOM SEARCH METHODS

In this lecture we will discuss some of the random search method to find the global min-
ima of the objective function. We discuss various search methods that attempts to search
throughout the entire feasible set. These methods use only objective function values and do
not require derivatives.

• These methods can be used to generate good initial points for the iterative methods
discussed in earlier chapters.

A. Näıve Random Search Method

A randomized search method, also called a probabilistic search method, is an algorithm that
searches the feasible set of an optimization problem by considering randomized samples of
candidate points in the set. Suppose that we wish to solve an optimization problem

min
x∈C

f(x)

Typically, we start a randomized search process by selecting a random initial point x0 ∈ C.
Then, we select a random next candidate point, usually close to x0.

• We assume that for any x ∈ C, there is a set N(x) ⊂ C such that we can generate
a random sample from this set. Typically, N(x)is a set of points that are close to x,
and for this reason we usually think of N(x) as a neighborhood of x.

• Since we are generating random number from the set N(x), we have to specify the
distribution of N(x). Often, this distribution is chosen to be uniform over N(x), other
distributions are often used, including Gaussian and Cauchy.

The algorithm of näıve random search is described below:

• Set i = 0. Select an initial point x0 ∈ C

• Pick a candidate point zi at random from N(x).
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• If f(zi) < f(xi), then set

xi+1 = zi

else set

xi+1 = xi

• If stopping criterion satisfied, then stop. Otherwise

• Set i = i + 1, go to step 2.

The update rule in random search method is

xi+1 = xi + di

Here the direction di is randomly generated. Also, by design the direction di is either 0 or
is a descent direction.

The random search may get stuck in a region around the local minima.

B. Simulated Annealing Algorithm

The simulation annealing method aims to find the global minima of the function. Unlike
random search method, the simulated annealing method also search for the point outside
of local minima. We modify the näıve search algorithm so that we can climb out of local
minima region. This means that the algorithm may accept a new point that is worse than
the current point. Again, in simulated annealing method we have

xi+1 = xi + di

But in simulated annealing the direction di might be an ascent direction.

Annealing is referred to as tempering certain alloys of metal, glass, or crystal by
heating above its melting point, holding its temperature, and then cooling it very
slowly until it solidifies into a perfect crystalline structure. The defect-free crystal
state corresponds to the global minimum energy configuration.
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• Simulated annealing is variant of the Metropolis algorithm, where temperature
changes from high to low.

• Simulated annealing is basically composed of two stochastic processes: one process for
the generation of solutions and the other for the acceptance of solutions.

• Simulated annealing is a descent algorithm modified by random ascent moves in order
to escape local minima which are not global minima.

• Simulated annealing is a general purpose, serial algorithm for finding a global mini-
mum for a continuous function. It is also a popular Monte Carlo algorithm for any
optimization problem.

C. Boltzman Equation

The probability of physical system being in state i with energy Ei is given by

Pi = 1
Z

e−Ei/kBT

where kB is known as Boltzman’ s constant and T is temperature. Here Z is normalization
constant and is also known as partition function.

Z =
∑

i

e−Ei/kBT

• At high T , the Boltzmann distribution exhibits uniform preference for all the states,
regardless of the energy.

• When T approaches zero, only the states with minimum energy have nonzero proba-
bility of occurrence.

• At high T , the system ignores small changes in the energy and approaches thermal
equilibrium rapidly, that is, it performs a coarse search of the space of global states
and finds a good minimum.

• As T is lowered, the system responds to small changes in the energy, and performs a
fine search in the neighborhood of the already determined minimum and finds a better
minimum.
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• At T = 0, any change in the system states does not lead to an increase in the energy,
and thus, the system must reach equilibrium if T = 0.

D. Definition of Terms

Let X be a solution space, i.e., space of all possible solutions. Let

f : X → R

be an objective function defined on solution space. Our aim is to find a global minimum x∗.
This means that there exist x∗ ∈ X such that

f(x) ≥ f(x∗) ∀ x ∈ X

Next we define N(x) to be neighborhood for x ∈ X. Therefore, associated with every
solution, x ∈ X, are neighboring solutions, N(x), that can be reached in a single iteration
of a local search algorithm.

• Start with initial solution x ∈ X.

• Generate the neighboring solution z ∈ N(x).

• Based on Metropolis acceptance criterion move from current solution x ∈ X to a
candidate solution z ∈ N(x).

• The candidate solution, z, is accepted as the current solution based on the acceptance
probability

P (Accept z as next solution) =

 e
− f(z)−f(x)

Ti if f(z) − f(x) > 0
1 if f(z) − f(x) ≤ 0

where Ti is temperature parameter at each iteration, such that

Ti > 0 for all i and lim
i → ∞

Ti = 0
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If the temperature is reduced sufficiently slowly, then the system can reach an equilibrium
(steady state) at each iteration i. The algorithm of simulated annealing is discussed below:

1. Set i = 0. Select an initial point x0 ∈ X.
2. Pick a candidate point zi at random from N(xi).
3. Initialize T with a large value and L (The number of iteration at a particular
temperature).
4. Evaluate ∆E(x) = f(zi) − f(xi).

If ∆E(x) < 0, keep the new state.
Otherwise, accept the new state with probability P = e−∆E/T .
Set xi+1 = zi else set xi+1 = xi.
until the number of accepted transitions is below a threshold level.

5. Set T = T − ∆T and also update L.
Until T is small enough.

6. Set i = i + 2, go to step 2.

The acceptance probability must be chosen appropriately. A typical choice is

P = min
{

1, e
− f(zi)−f(xi)

Ti

}
Notice that if

f(zi) ≤ f(xi)

Then
P = min

{
1, e

− f(zi)−f(xi)
Ti

}
= 1

which means that we set
xi+1 = zi

However, if
f(zi) > f(xi)

there is still a positive probability of setting

xi+1 = zi

This probability is equal to
e

− f(zi)−f(xi)
Ti
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• Larger the difference f(zi) − f(xi), the less likely we are to move to the worse point
zi. Similarly, the smaller the value of Ti the less likely we are to move to zi.

• The temperature Ti monotonically decreases to 0. In other words, as the iteration
index i increases, the algorithm becomes increasingly reluctant to move to a worse
point.

• Hajek shows that an appropriate cooling schedule is

Ti = T0

ln(i + 2) , T0 > 0

where T0 is large enough to allow the algorithm to climb out of regions around local
minimizers that are not global minimizers.

[1] Wei-Ta Chu, https://www.cs.ccu.edu.tw/˜wtchu/courses/2012s_OPT/Lectures/

Chapter%2014%20Global%20Search%20Algorithms.pdf.

[2] K.-L. Du and M.N.S. Swamy, Search and Optimization by Metaheuristics, Springer, 2016.

[3] https://am207.github.io/2017/wiki/lab4.html.

[4] https://pdfs.semanticscholar.org/2726/93df38b60670a8ea788122a7de353a9a7ff0.

pdf.
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ARCH and GARCH

XVII. ARCH AND GARCH MODELS

In this chapter, we will use some of the previously discussed optimization methods to find
the parameters of GARCH(1,1) model. Note that in standard regression model

yi = α0 + α1xi + ϵi

the variance of the residuals, ϵi is constant (also known as homoscedastic) and we use
ordinary leat square regression to estimate the constants α0 and α1. If the variance ϵi is not
constant (also known as heteroscedastic) then we can use weighted least squares to estimate
the regression coefficients. According to ARCH(1,1) model, the log return on the asset at
time i is modeled as

Ri = µi + σiϵi = µi + εi (22)

where ϵi is a sequence of N(0, 1) i.i.d. random variables and εi = σiϵi, is also referred to as
the shock or innovation of an asset return at time i. The conditional mean and variance of
Ri is given by

µi = E[Ri|Fi−1] σ2
i = Var [Ri|Fi−1] = E[(Ri − µi)2|Fi−1] (23)

where Fi−1 is the information set available at time i − 1. Note that

Var (εi) = σ2
i

Here the disturbance εi is independent of all past and future ε’s. Thus there is no serial
correlation in ε’s, i.e., past price movement gives no information about the sign of the random
component of return in period i. Let us define the residual return at time i, Ri − µi, as

ui = σiϵi = εi

Using Eqs. (22) and (23), we can also write

σ2
i = Var [Ri|Fi−1] = Var [εi|Fi−1]

The positive square root of σi is the volatility. The model which study the evolution of σ2
i

is also known as conditional heteroscedastic model.
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A. ARCH Model

In this section we will discuss the ARCH(1) and GARCH (1,1) model. The ARCH(1) model
describes the evolution of σ2

i . In Arch(1) model we assume that

ui = σiϵi = εi

where {ϵi} are iid random variables with mean 0 and variance 1. The evolution equation for
variance in ARCH(1) model is written as

σ2
i+1 = ω + αu2

i = ω + αε2
i

where ω > 0 and α ≥ 0 to ensure positive variance and α < 1 for stationarity. Note that σ2
i

is a model for volatility of Ri. Thus the basic idea of ARCH model is

• The shock ui of an asset return is serially uncorrelated, but dependent.

The important result of ARCH model is

1. It can produce volatility clustering.

2. The shocks ui have heavy tail.

The weakness of ARCH model are

• The volatility in ARCH model depends on square of the previous shocks and hence
positive and negative shocks produces the same effect. In reality, the positive and
negative shocks have different effects.

• In ARCH model we need large number of parameters to adequately describe the volatil-
ity process of asset return.

B. Standardized Residuals

The standardized residuals is defined as

ûi = ui

σi

The sequence ûi is an iid random variables and it can be used to check the adequacy of
a fitted ARCH model. The QQ plot of the standardized residuals are used to check the
normality of the residuals. The Ljung-Box statistics of û2

i can be used to test the validity
of the volatility equation.
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C. GARCH Model

The dynamic variance in GARCH (1,1) variance model is written as

σ2
i+1 = ω + αu2

i + βσ2
i

The equation states that conditional variance of tomorrow’s return is equal to a constant,
plus today’s residual squared, plus today’s known variance. In this equation ui = σiϵi. The
common choices for ϵi are normal and student’s t disturbances. Also

u = (u1, u2, . . . , un)T

is return on some asset with zero mean. The unconditional, or long-run average, variance,
σ2 turns out to be

σ2 = ω

1 − α − β

• The GARCH variance model is mean reverting process, i.e., over long time horizon,
the conditional variance get pull back to a long-run average level of σ2.

• The sum (α + β) plays a crucial role concerning the forecasting with GARCH models
and is commonly called the persistence level/index of the model: a high persistence,
(α + β) close to 1, implies that shocks which push variance away from its long-run
average will persist for a long time, even though eventually the long-horizon forecast
will be the long-run average variance, σ2.

• Also, GARCH(1,1) model is equivalent to ARCH(∞) model.

D. GARCH Parameter Estimation Using Gaussian Errors

To find the parameters of GARCH model, we use maximum likelihood estimation (MLE).
MLE for GARCH(1,1) model can be estimated as follows: In GARCH(1,1) model, we have

ui = µi + σiϵi = µi + εi

σ2
i = ω + αu2

i−1 + βσ2
i−1
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where ϵi ∼ N(0, 1) are conditionally i.i.d. normal and µi = 0. Since ϵi are normal, we take
the likelihood function as

L(u, θθθ) =
n∏

i=1

1√
2πσ2

i

exp
(

−(ui − µi)2

2σ2
i

)

=
n∏

i=1

1√
2πσ2

i

exp
(

− u2
i

2σ2
i

)

and hence the normal log-likelihood function is

l(u, θθθ) =
n∑

i=1
ln [p(ui|σi;θθθ)]

where p is the probability density and θθθ is the parameters of the GARCH(1,1) model. Note
that in above equation

p(ui|σi;θθθ) = 1√
2πσ2

i

exp
(

− u2
i

2σ2
i

)

Thus we are given ui and we have to determine θθθ = {ω, α, β}. Using above equation, we
obtain

l(u, θθθ) = ln L(u, θθθ) =
n∑

i=1

[
−1

2 ln(2π) − 1
2 ln(σ2

i ) − u2
i

2σ2
i

]

Now to maximize the log-likelihood function, we set

∂l(u, θθθ)
∂σ2

i

=
n∑

i=1
− 1

2σ2
i

+ u2
i

2σ4
i

= 0

This equation can be written as

∂l(u, θθθ)
∂σ2

i

= 1
2

n∑
i=1

1
σ2

i

(
u2

i

σ2
i

− 1
)

From here we can see that parameters of the volatility model must be chosen to make(
u2

i

σ2
i

− 1
)

as close to zero as possible. Now the parameters of the GARCH(1,1) model are
ω, α and β and hence we write

∂l(u, θθθ)
∂θi

= ∂l(u, θθθ)
∂σ2

i

∂σ2
i

∂θi

These derivatives can be determined recursively using the relation

σ2
i = ω + αu2

i−1 + βσ2
i−1

= ω + αu2
i−1 + β[ω + αu2

i−2 + βσ2
i−2]
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Thus

∂σ2
i

∂ω
= 1 + β

∂σ2
i−1

∂ω
∂σ2

i

∂α
= u2

i−1 + β
∂σ2

i−1
∂α

∂σ2
i

∂β
= σ2

i−1 + β
∂σ2

i−1
∂β

Now
∂σ2

i

∂ω
= 1 + β

∂σ2
i−1

∂ω
≈ 1

1 − β

Thus using the above equations, we can determine the GARCH(1,1) parameter.

An alternative way to determine GARCH(1,1) model is given in Hull book. According
to it we maximize

L(u, θθθ) =
n∏

i=1

1√
2πσ2

i

exp
(

− u2
i

2σ2
i

)

which is equivalent to maximizing

l(u, θθθ) =
n∑

i=1

[
−1

2 ln(2π) − 1
2 ln(σ2

i ) − u2
i

2σ2
i

]

also

σ2
i = ω + αu2

i−1 + βσ2
i−1

Here we search iteratively to find the parameters that maximizes the expression in this
equation. Note that we need σ2

1 for complete definition of l(u, θθθ). Thus a reasonable guess
of σ2

1 improves accuracy in finite samples. The exact value of σ2
1 does not matter in large

samples, since σ2
i converges to its stationary distribution for large i. A reasonable guess of

σ2
1 is sample unconditional variance.

E. Optimization Method

Newton’s method can obtain result of optimization problem. In the case of multidimensional
optimization, we seek a zero of the gradient. We know that the iteration scheme for Newton’s
method has the form

xi+1 = xi − ∇f(xi)
∇2f(xi)
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Thus, for the maximum likelihood problem, we have

θ̂θθ = arg max
θθθ

l(θθθ)

We can obtain approximated value of θθθi, after ith iteration as

θθθi+1 = θθθi − ∇l(θθθi)
∇2l(θθθi)

= θθθi − ∇l(θθθi)
J(θθθi)

where
J = E

[
∇2l(θθθ)

]
is the Fisher Information matrix. Now

∇l(θθθ) = ∂l(u, θθθ)
∂σ2

i

∂σ2
i

∂θθθ
= 1

2

n∑
i=1

1
σ2

i

(
u2

i

σ2
i

− 1
)

× ∂σ2
i

∂θθθ

But

∂σ2
i

∂θθθ
=


∂σ2

i

∂ω

∂σ2
i

∂α

∂σ2
i

∂β

 =


1 + β

∂σ2
i−1

∂ω

u2
i−1 + β

∂σ2
i−1

∂α

σ2
i−1 + β

∂σ2
i−1

∂β


and Fisher information matrix is
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