5.

Problem 11.50E (HRW)

Two particles, each with mass m, are fastened to each other, and to a rotation axis at O, by two thin rods, each with length l and mass M as shown in the figure. The combination rotates around the rotation axis with angular velocity ω. Obtain algebraic expressions for (a) the rotational inertia of the combination about O and (b) the kinetic energy of rotation about O.

Solution:

(a)
As mass of each rod is \(m \) and their combined length is \(2l \), the moment of inertia of the rods with respect to rotation axis at \(O \) is
\[
\frac{1}{3} \times 2M \times (2l)^2 = \frac{8}{3} Ml^2.
\]
The moment of inertia of the two balls about \(O \) is
\[
ml^2 + m(2l)^2 = 5ml^2.
\]
Therefore, the algebraic expression for the rotational inertia of the combination about \(O \) is
\[
I = \frac{8}{3} Ml^2 + 5ml^2.
\]
(b)
And, the kinetic energy of rotation about \(O \) is
\[
KE_{rot} = \frac{1}{2} \times I \omega^2 = \frac{1}{2} \left(\frac{8}{3} M + 5m \right) l^2 \omega^2.
\]