Roll No.

B.Sc.Programme-II

Physics - Paper No. PH201

Physical Science

(Electricity, Magnetism and Electromagnetic Theory)

Time: 3 Hours Maximum Marks: 50

Question No. 1 is **compulsory** & attempt **four** other questions.

Q 1 Answer any four:

 $4 \times 2\frac{1}{2} = 10$

- (a) Find the angle between $\mathbf{A} = 2\mathbf{i} + 2\mathbf{j} \mathbf{k}$ and $\mathbf{B} = 6\mathbf{i} 3\mathbf{j} \mathbf{k}$
- (b) Determine the value of a so that $\mathbf{A} = 2\mathbf{i} + a\mathbf{j} + \mathbf{k}$ and $\mathbf{B} = 4\mathbf{i} 2\mathbf{j} 2\mathbf{k}$ are perpendicular.
- (c) Given $\mathbf{R} = sint \, \mathbf{i} + cost \, \mathbf{j} + t\mathbf{k}$, find

$$\frac{d^2}{dt^2}$$
R

- (d) If $\phi(x, y, z) = 3x^2y y^3z^2$, find $\nabla \phi$ at the point (1, -2, -1).
- (e) If $\mathbf{A} = 2yz\mathbf{i} x^2y\mathbf{j} + xz^2\mathbf{k}$ and $\mathbf{B} = x^2\mathbf{i} + yz\mathbf{j} xy\mathbf{k}$, find $(\mathbf{B} \cdot \nabla)\mathbf{A}$.

Q 2 (a) If $\mathbf{v} = \omega \times \mathbf{r}$, prove $\omega = \frac{1}{2} curl \mathbf{v}$

6

4

4

- (b) Show that $\nabla r^n = nr^{n-2}\mathbf{r}$
- **Q 3** (a) Find a unit normal to the surface $x^2y + 2xz = 4$ at the point (2, -2, 3).
 - (b) Find $\nabla \phi$ if $\phi = \frac{1}{r}$.
- **Q 4** State the Gauss law in electrostatics. Using Gauss law find the electric field outside and inside a uniformly charged sphere of radius a.
- **Q 5** (a) Establish a relation between the electrostatic field and the electrostatic field.
 - (b) Find the electric field of a dipole in polar coordinates (r, θ) .
- **Q 6** If $\mathbf{F} = 2y\mathbf{i} z\mathbf{j} + x^2\mathbf{k}$ and S is the surface of the parabolic cylinder $y^2 = 8x$ in the first octant bounded y = 4 and z = 6, evaluate

$$\int \int_{S} \mathbf{F} \cdot \mathbf{n} ds$$