ANOVA

Analysis of Variance

Chapter 16

ANOVA

- A procedure for comparing more than two groups
 - independent variable: smoking status
 - non-smoking
 - one pack a day
 - > two packs a day
 - dependent variable: number of coughs per day
- k = number of conditions (in this case, 3)

One-Way ANOVA

- One-Way ANOVA has one independent variable (1 *factor*) with > 2 *conditions* – conditions = levels = treatments
 - e.g., for a <u>brand of cola</u> factor, the levels are:
 Coke, Pepsi, RC Cola
- Independent variables = factors

Two-Way ANOVA

- Two-Way ANOVA has 2 independent variables (factors)
 - each can have multiple conditions

<u>Example</u>

- Two Independent Variables (IV's)
 - IV1: Brand; and IV2: Calories
 - Three levels of Brand:
 - Coke, Pepsi, RC Cola
 Two levels of Calories:
 - Regular, Diet

When to use ANOVA

- One-way ANOVA: you have more than two levels (conditions) of a single IV
 - EXAMPLE: studying effectiveness of three types of pain reliever
 - aspirin vs. tylenol vs. ibuprofen
- Two-way ANOVA: you have more than one IV (factor)
 - EXAMPLE: studying pain relief based on pain reliever and type of pain
 - Factor A: Pain reliever (aspirin vs. tylenol)
 - Factor B: type of pain (headache vs. back pain)

ANOVA

- When a factor uses independent samples in all conditions, it is called a <u>between-</u> <u>subjects factor</u>
 - between-subjects ANOVA
- When a factor uses related samples in all conditions, it is called a <u>within-subjects</u> <u>factor</u>
 - within-subjects ANOVA
 - PASW: referred to as repeated measures

ANC	VA & PA	ASW
	2 samples	2 or more samples
Independent Samples	Independent Samples <i>t</i> -test	Between Subjects ANOVA
Related Samples	Paired Samples <i>t</i> -test	Repeated Measures ANOVA

Familywise error rate

- Overall probability of making a Type I (false alarm) error somewhere in an experiment
- One *t*-test,
 - familywise error rate is equal to α (e.g., .05)
- Multiple *t*-tests
 - result in a familywise error rate much larger than the α we selected
- ANOVA keeps the familywise error rate equal to α

- In that case, we follow the ANOVA with <u>post-hoc</u> tests that compare two conditions at a time
 - post-hoc comparisons identify the specific significant differences between each pair

$$F-Ratio = \frac{\text{between group variance}}{\text{error variance (within groups)}}$$
$$F-Ratio = \frac{\text{Treatment effect + Chance}}{\text{Comparent of the second seco$$

$$F-Ratio = \frac{Treatment effect + Change Chan$$

• When H_0 is TRUE (there is no treatment effect):

$$F = \frac{0 + Chance}{Chance} \cong 1$$

• When H_0 is FALSE (there is a treatment effect):

$$F = \frac{Treatment effect + Chance}{Chance} > 1$$

• In ANOVA, variance = Mean Square (*MS*)

$$F-Ratio = \frac{\text{between group variance}}{\text{error variance (within groups)}} = \frac{MS_{\text{group}}}{MS_{\text{error}}}$$

Signal-to Noise Ratio

- ANOVA is about looking at the *signal* relative to *noise*
- MS_{group} is the *signal*
- MS_{error} is the *noise*
- We want to see if the between-group variance (signal), is comparable to the within-group variance (noise)

Logic Behind ANOVA

- If there is <u>no</u> true difference between groups at the population level:
 - the only differences we get between groups in the sample should be due to error.
 - if that's the case, differences <u>between groups</u> should be about the same as differences among individual scores <u>within</u> groups (error).

 $-MS_{\text{group}}$ and MS_{error} will be about the same.

ANOVA Example: Cell phones

Research Question:

- Is your reaction time when driving slowed by a cell phone? Does it matter if it's a hands-free phone?
- Twelve participants went into a driving simulator.
 - 1. A random subset of 4 drove while listening to the radio (control group).
 - 2. Another 4 drove while talking on a cell phone.
 - 3. Remaining 4 drove while talking on a hands-free cell phone.
- Every so often, participants would approach a traffic light that was turning red. The time it took for participants to hit the breaks was measured.

A 6 Step Program for Hypothesis Testing

- 1. State your research question
- 2. Choose a statistical test
- 3. Select alpha which determines the critical value $(F_{.05})$
- 4. State your statistical hypotheses (as equations)
- 5. Collect data and calculate test statistic (F_{obt})
- Interpret results in terms of hypothesis Report results Explain in plain language

A 6 Step Program for Hypothesis Testing

- 1. State your research question
 - Is your reaction time when driving influenced by cell-phone usage?
- 2. Choose a statistical test
 - three levels of a single independent variable (cell; hands-free; control)
 - \rightarrow One-Way ANOVA, between subjects

3. Select α , which determines the critical value

- $\alpha = .05$ in this case
- See *F*-tables (page 543 in the Appendix)
- $df_{group} = k 1 = 3 1 = 2$ (numerator)
- $df_{error} = k (n 1) = 3(4 1) = 9$ (denominator)
- $F_{05} = ?$
 - 4.26

F Distribution critical values (alpha = .05)										
•	$df_{\rm gro}$	up = 1	k - 1	= 3	3 - 1	= 2	r)	nume	rato	r)
• $a g_{error} = k (n - 1) = 3(4 - 1) = 9$ (denominator)										
			Degre	es of Fre	edom f	or Num	erator			
df denom	. 1	2	3	4	5	6	7	8	9	10
1	161.4	199.5	215.8	224.8	230.0	233.8	236.5	238.6	240.1	242.1
2	18.51	19.00	19.16	19.25	19.30	19.33	19.35	19.37	19.38	19.40
3	10.13	9.55	9.28	9.12	9.01	8.94	8.89	8.85	8.81	8.79
4	7.71	6.94	6.59	6.39	6.26	6.16	6.09	6.04	6.00	5.96
5	6.61	5.79	5.41	5.19	5.05	4.95	4.88	4.82	4.77	4.74
6	5.99	5.14	4.76	4.53	4.39	4.28	4.21	4.15	4.10	4.06
7	5.59	4.74	4.35	4.12	3.97	3.87	3.79	3.73	3.68	3.64
8	5.32	4.46	4.07	3.84	3.69	3.58	3.50	3.44	3.39	3.35
9	5.12	4.26	3.86	3.63	3.48	3.37	3.29	3.23	3.18	3.14
10	4.96	4.10	3.71	3.48	3.33	3.22	3.14	3.07	3.02	2.98
11	4.84	3.08	3 50	3 36	3 20	3.00	3.01	2 95	2 00	2.85

ANOVA Summary Table						
Source	Sum of Squares	df	Mean Squares	F		
Group Error	SS _{group} SS _{error}	df _{group} df _{error}	MS _{group} MS _{error}	F _{obt}		
Total	SS_{total}	$df_{\rm total}$				
• SS = Sum of squared deviations or "Sum of Squares"						

А	NOVA S	Summa	ary Table	
Source	Sum of Squares	df	Mean Squares	F
Group Error Total	.072 .050 .122 $_{\rm nl} = SS_{\rm error} +$	df_{group} df_{error} df_{total} SS_{group}	MS _{group} MS _{error}	F _{obt}
SS _{tota}	$_{\rm ul} = .072 + .072$	050 = .1	22	

Source	Sum of	df	Mean	F
_	Squares		Squares	
Group	.072	2	MS _{group}	F_{ob}
Error	.050	9	MS _{error}	
Total	.122	11		
• df betw	veen group	s = l	k - 1	
• <i>df</i> erro	r (within s	roun	(s) = k (n - k)	.1)

Source	Sum of Squares	df	Mean Squares	F
Group	.072	2	.0360	6.45
Error	.050	9	.0056	
Total	.122	11		

ANOVA Example: Cell phones

- Interpret results in terms of hypothesis 6.45 > 4.26; Reject H₀ and accept H₁
- Report results *F*(2, 9) = 6.45, *p* < .05
- Explain in plain language
 - Among those three groups, there is at least one significant difference

Post-hoc Comparisons

- Bonferroni procedure
 - uses *t*-tests to perform pairwise comparisons between group means,
 - but controls overall error rate by setting the error rate for each test to the familywise error rate divided by the total number of tests.
 - Hence, the observed significance level is **adjusted** for the fact that multiple comparisons are being made.
 - e.g., if six comparisons are being made (all possibilities for four groups), then alpha = .05/6
 = .0083

Post-hoc Comparisons

Tukey HSD

- (Honestly Significant Difference)
- sets the familywise error rate at the error rate for the collection for all pairwise comparisons.
- very common test
- Other post-hoc tests also seen: - e.g., Newman-Keuls, Duncan, Scheffe'...

Effect Size: Partial Eta Squared

 Partial Eta squared (η²) indicates the proportion of variance attributable to a factor

- 0.20 small effect
- 0.50 medium effect
- 0.80 large effect
- Calculation: PASW

Effect Size: Omega Squared

• A less biased indicator of variance explained in the population by a predictor variable

 $\omega^{2} = \frac{SS_{\text{group}} - (k-1)MS_{\text{error}}}{SS_{\text{total}} + MS_{\text{error}}}$

$$\omega^2 = \frac{.072 - (3 - 1)(.0056)}{.122 + .0056} = 0.48$$

• 48% of the variability in response times can be attributed to group membership (medium effect)

PASW: One-Way ANOVA (Between Subjects)

- Setup a one-way between subjects ANOVA as you would an independent samples t-test:
- · Create two variables
 - one variable contains levels of your independent variable (here called "group").
 - there are three groups in this case numbered 1-3.
 - second variable contains the scores of your dependent variable (here called "time")

PASW :

One-Way ANOVA (Between Subjects)

🖬 cell pha	nes.sav (Data	Set2] - PASW S					
<u>F</u> ile <u>E</u> dit	⊻iew <u>D</u> ata	<u>T</u> ransform <u>A</u> nal					
궏 📕 🚔	📴 🦘 📌 🕌	📭 🔐 👫					
13 : group							
	group	time					
1	1.00	.50					
2	1.00	.55					
3	1.00	.45					
4	1.00	.40					
5	2.00	.75					
6	2.00	.65					
7	2.00	.60					
8	2.00	.60					
9	3.00	.65					
10	3.00	.50					
11	3.00	.65					
12	3.00	.70					

- Label the numbers you used to differentiate groups:
- Go to "Variable View", then click on the "Values" box, then the gray box labeled "..."
- Enter Value (in this case 1, 2 or 3) and the Value Label (in this case: control, cell, hands)
- Click "Add", and then add the next two variables.

	1 +n r +	A 19 H	18 日日		1 1		
	Name	Type	Width	Decimals	Label	Values	Missing
1	group	Numeric	8	2		(1.00, cont.	None
2	time	Alimanda	0	0	_	Alena I	None
3		Value Labels				×	
- 4	1	Value Labers					
5		Value 3			Sp	elling	
6		Labet hands	hands				
7			1.00 = *contr	*I0			
		4.64	2.00 - Male				

Descriptive Statistics									
Depender	nt Vari	able:ti	me			_			
aroup	Mo	an	Std. Dovia	ation	Ν				
control	.4	750	.04	6455		4			
coll	.6	500	.07	7071		4			
hands	.6	250	.08	3660		4			
Total	.5	833 .10517		0517	1	z	if $p < .05$, then		en
significant effect									
Tests of Between-Subjects Effects									
Source		Typ: of S	o III Sum Squaros	df	Moa	n Squaro	F	Sig.	Partial Eta Squared
Corrected M	odol		.072ª	2		.036	6.450	.018	.589
ntorcopt			4.083	1		4.083	735.000	.000	.988
group			.072	2		.036	6.450	(.018	.589
Error			.050	9		.006		\sim	
Total			4.205	12					
Corrected Te	stal		.122	11					
a. R Squa	ared =	.589 (4	Adjusted R S	Squared =	.498)				

Dependent Varia Tukey HSD control and cell groups are significantly different						
		Mean Difference			95% Confide	ence Interval
(I) condition	(J) condition	(-,)	Std. Error	Sig.	Lower Bound	Upper Bound
control	cell	17500*	.05270	.022	3222	0278
	hands	15000*	.05270	.046	2972	0028
cell	control	.17500*	.05270	.022	.0278	.3222
	hands	.02500	.05270	.885	1222	.1722
hands	control	.15000*	.05270	.046	.0028	.2972
	cell	02500	.05270	.885	1722	.1222
* The mean difference is significant at the .05 level. hands and cell groups are NOT significantly different						
 Complete explanation Any kind of cell phone conversation can cause a longer reaction time compared to listening to the radio. There is no scientificant difference between section times in 						
th	e normal c	ell phone a	and hands	-free con	ditions	

PASW Data Example						
• Three groups with three in each group $(N = 9)$						
	Fast	Medium	Slow			
	20.0	2.0	2.0			
	44.0	22.0	2.0			
	30.0	2.0	2.0			
$\overline{X} =$	31.3	8.7	2.0			

errors Tukev HSI	Multiple Ce slow and medium groups a not significantly different					
				95% Confidence Interval		
(I) group Speed	(J) group Speed	Mean Difference (I- J)	Std. Error	Sig	Lower Bound	Upper Bound
slow	medium	22.6667	7.86930	.063	-1.4785	46.8118
	fast	29.3333	7.86930	.023	5.1882	53.4785
medium	wola	-22.6667	7.86930	.063	-46.8118	1.4785
	fast	6.6667	7.86930	.690	-17,4785	30,8118
fast	slow	-29,3333	7.86930	.023	-53,4785	-5.1882
	medium	-6.6667	7.86930	.690	-30.8118	17.4785
Based on The error *. The	obsorvod m torm is Moa mean differe	cans. n Squarc(Error) = nce is significant	92.889. at the .05 leve	d.		

- His boss noticed his behavior and said, "Joe, don't work too hard!"
- A Neutral Version Item

 Joe came to work and immediately began to work. His boss noticed his behavior and said, "Joe, don't work too hard!"
- Following each story, participants were asked:
 Did the manager believe Joe was working hard?

