Algebraic Identities...

By RASHMI KATHURIA

Activity 4

Aim : To prove the algebraic identity $a^{3}+b^{3}=(a+b)\left(a^{2}-a b+b^{2}\right)$ using unit cubes.

Material required: Unit Cubes.

Start Working.

Take any suitable value for a and b.
Let $a=3$ and $b=1$

Step 1. To represent (a) ${ }^{3}$ make a cube of dimension $\mathbf{a x a x a}$ i.e. $3 \times 3 \times 3$ cubic units.

Step2. To represent (b) ${ }^{3}$ take \mathbf{a} cube of dimension $\mathbf{b} \mathbf{x} \mathbf{b} \mathbf{x} \mathbf{b}$ i.e. $1 \times 1 \times 1$ cubic units.

Step3. To represent $\mathbf{a}^{3}+\mathbf{b}^{3}$ add a cube of dimension $b \mathbf{x} \mathbf{b} \mathbf{x}$ bi.e. $1 \times 1 \times 1$ to the cube formed in the step 1 of dimension $a x a x a$ i. e $3 \times 3 \times 3$ cubic units.

=

Step4. To represent $(a+b) a^{2}$ make a cuboid of dimension (a+b) $x a x a$ i.e. $4 \times 3 \times 3$ cubic units.

Step5. To represent $(\mathbf{a}+\mathbf{b}) \mathbf{a}^{2}+(\mathbf{a}+\mathbf{b}) \mathbf{b}^{2}$ add a cuboid of dimension $(a+b) \times b \times b$ i. e $4 \times 1 \times 1$ to the cuboid formed in the previous step.

Step6. To represent $(\mathbf{a}+\mathbf{b}) \mathbf{a}^{2}+(\mathbf{a}+\mathbf{b}) \mathbf{b}^{2}-(\mathbf{a}+\mathbf{b}) \mathbf{a b}$ extract a cuboid of dimension ($a+b$) $\mathbf{x a x b}$ i.e. $4 \times 3 \times 1$ cubic units from the shape formed in the previous step..

Step7. Rearrange the unit cubes left to form the shape formed in the Step 3.

Observe the following

The number of unit cubes in $a^{3}=\ldots 27 \ldots$.
The number of unit cubes in $b^{3}=\ldots 1 \ldots$.
The number of unit cubes in $a^{3}+b^{3}=\ldots 28 \ldots .$.

- The number of unit cubes in $(a+b) a^{2}=\ldots 36 \ldots \ldots$
- The number of unit cubes in $(a+b) a b=\ldots 12 \ldots .$.
- The number of unit cubes in $(a+b) b^{2}=\ldots 4 \ldots .$.
- The number of unit cubes in $(a+b) a^{2} _(a+b) a b+$ $(a+b) b^{2}$
$=. . .28 \ldots . .$.

Learning Outcome

It is observed that the number of unit cubes in $a^{3}+b^{\mathbf{3}}$ is equal to the number of unit cubes in $(a+b) a^{2}-(a+b) a b+(a+b) b^{2}$ i.e.
$(a+b)\left(a^{2}-a b+b^{2}\right)$.

Acknowledgement

o I would like to thank my sister who has helped me to click these picture from the mobile and then transferring to the computer.

Thank You

