Exploring Algebraic Identities

A presentation by.. Rashmi Kathuria

Activity 1

- Aim : To prove the algebraic identity

$$
\begin{aligned}
& (a+b)^{3}=a^{3}+3 a^{2} b+3 a b^{2}+b^{3} \\
& \text { using unit cubes. }
\end{aligned}
$$

Material required: Unit Cubes.

Start Working..

Take any suitable value for a and b .
Let $\mathrm{a}=3$ and $\mathrm{b}=1$

Step 1. To represent a ${ }^{3}$ make a cube of dimension a xax a i.e. $3 \times 3 \times 3$ cubic units.

Step 2. To represent 3a²b make 3 cuboids of dimension $a \times a \times b$ i.e. $3 \times 3 \times 1$ cubic units.

Step 3. To represent 3ab² make 3 cuboids of dimension a x b x bi.e. $3 \times 1 \times 1$ cubic units.

Step 4. To represent b^{3} make a cube of dimension a xaxai.e. $1 \times 1 \times 1$ cubic units.

Step 5. Join all the cubes and cuboids formed in the previous steps to make a cube of dimension
$(a+b) \times(a+b) \times(a+b) \quad$ i.e. $4 \times 4 \times 4$ cubic units.

Observe the following

- The number of unit cubes in $\mathrm{a}^{3} \quad=. .27 \ldots$.
- The number of unit cubes in $3 a^{2} b$
=...27...
- The number of unit cubes in $3 a^{2}$
$=\ldots 9 \ldots$.
- The number of unit cubes in b^{3}
$=\ldots 1 \ldots .$.
- The number of unit cubes in $a^{3}+3 a^{2} b+3 a b^{2}+b^{3}$
$=$..64....
- The number of unit cubes in $(a+b)^{3} \quad=\ldots 64 \ldots$

Learning outcome

It is observed that the number of unit cubes in (a+b) ${ }^{3}$ is equal to the number of unit cubes in $a^{3}+3 a^{2} b+3 a b^{2}+b^{3}$.

