Exploring Algebraic Identities

A presentation by.. Rashmi Kathuria

Activity 1

Aim : To prove the algebraic identity (a+b)³ = a³ +3a²b+3ab²+b³ using unit cubes.

Material required: Unit Cubes.

Start Working..

Take any suitable value for a and b. Let a=3 and b=1

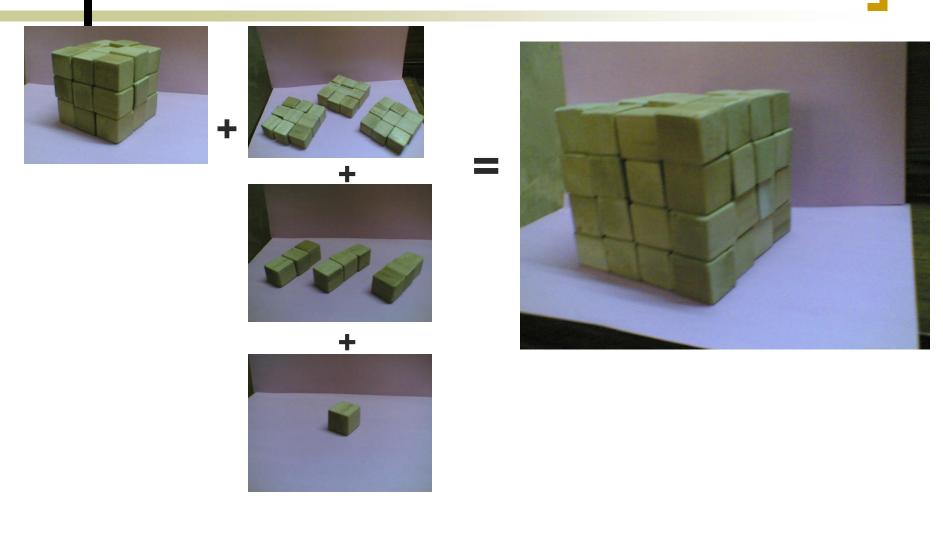
Step 1. To represent a³ make a cube of dimension a x a x a i.e. 3x3x3 cubic units.

Step 2. To represent 3a²b make 3 cuboids of dimension a x a x b i.e. 3x3x1 cubic units.

Step 3. To represent 3ab² make 3 cuboids of dimension a x b x b i.e. 3x1x1 cubic units.

Step 4. To represent b³ make a cube of dimension a x a x a i.e. 1x1x1 cubic units.

Step 5. Join all the cubes and cuboids formed in the previous steps to make a cube of dimension (a +b) x (a +b) x (a +b) i.e. 4x4x4 cubic units.



Observe the following

- The number of unit cubes in a³
- The number of unit cubes in 3a²b
- The number of unit cubes in 3ab²
- The number of unit cubes in b³
- The number of unit cubes in a³ + 3a²b + 3ab² + b³
- The number of unit cubes in (a+b)³ =...64...

- = ...27.... =...27... =...9.... =...1....
- = ...64.....

It is observed that the number of unit cubes in $(a+b)^3$ is equal to the number of unit cubes in $a^3 + 3a^2b + 3ab^2 + b^3$.