Conservation of Angular Momentum

1 plug in, pole
2 string (about 1 m long)
3 weight
A rotation axis

Teacher's Guide:

Tie the weight to an approx. 1 m long line and to a stick, stake, pole or pole. You can also hold the string with your fingers.
Set the weight in rotation so that the cord winds around the bar or arm.

Task:

Watch the speed of weight!

Result:

The shorter the cord, the smaller the turning radius, the
 faster the weight revolves!
Not only the rotation frequency ω becomes larger, but also the velocity v .

Statement:

For a mass m which rotates about an axis A and on which only radial forces act, angular momentum conservation, i. that at any time the product of mass, radius and speed is the same:

$$
m \cdot v(t) \cdot r=\text { cons. }
$$

or for any two positions (1) and (2):

$$
m v_{1} r_{1}=m v_{2} r_{2}
$$

With

$$
\begin{gathered}
v=\omega \tau \\
m \omega_{1} r_{1}^{2}=m \quad \omega_{2} r_{2}^{2} \\
\frac{w_{1}}{\omega_{2}}=\left(\frac{r_{2}}{r_{1}}\right)^{2}
\end{gathered}
$$

In other words, if the radius is halved, the rotation frequency quadruples!

Teachers question:

A ballet dancer turns a pirouette. How can she speed up her rotation?

Answer:

By putting on the outstretched arms!

Category	
Title	Conservation of angular momentum
Physical subject matter	Mechanics, rotation
Learning level	4
Preparation difficulty	2
Price per set/€	
Attractiveness	2
Standart-exotic	2
Instructions set-up	yes
Instructions execution	yes

