# User:Meenakshi narayanaswamy/sandbox

<kaltura-widget kalturaid='0_q64x7awn' size='M' align='L'/> Elasticity of Demand {{SLMintro|

 Learning Objectives After reading this chapter, you are expected to learn about: understand 1. How consumers arrive at optimal consumption combination in response to change in the price of a good? 2. How demand decisions in response to price changes vary for different types of goods?

αβγ θ φ \pi λ Δ Λ π $\sqrt(x)$\ $\sqrt x_[1]^{2}$ \sqrt x_{1}$Insert formula here$^{2} $\alpha$ $\beta$ $\gamma$ $\theta$ $\Phi$ $\Pi$

$\mathcal{DELHI}$

$Insert formula here$ $\lambda$ $\Lambda$ $\sqrt{x}$ $x_{1}^{2}$ $\sqrt[n]{x}$ $\sqrt{x^2+y^2}$ Fractions $\frac{25}{98}$

$\sqrt{\frac{x^3+y^3}{x^2+y^2}}$ $\sum_{i=0}^{n}x_i=99$ $\ltmath\gt\sum x_i=99$ [/itex]

$\int x^{2}dx$ $\int_{0}^{\infty}x^3dx =n$

$=\frac{dy}{dx}$

$x\pm3$ x\geq3

$x\leq3$ $x\neq y$ $\approx$ $\rightarrow \leftarrow \uparrow \downarrow \ltmath\gt\Rightarrow$ $\begin{matrix}1 & 2 & 3\\23 & 34 & 45\\32 & 16 & 56\end{matrix}$

$\begin{pmatrix}1 & 2 & 3\\23 & 34 & 45\\32 & 16 & 56\end{pmatrix}$

$\begin{bmatrix}1 & 2 & 3\\23 & 34 & 45\\32 & 16 & 56\end{bmatrix}$ $\begin{vmatrix}1 & 2 & 3\\23 & 34 & 45\\32 & 16 & 56\end{vmatrix}$ $\begin{Vmatrix}1 & 2 & 3\\23 & 34 & 45\\32 & 16 & 56\end{Vmatrix}\mathcal{delhi}$

$\mathcal{delhi}$

$\alpha$

$\beta$ $\gamma$,$\pi$,

$\Lambda$ \begin{matrx}0&1&2\\45&43&0\\-1&3&4 $\Pi$, $\lambda$, $\Lambda$

Square root

$\sqrt{x^2+y^3}$

$\sqrt[n]{x_1^2+y_1^2}$

Fractions

$\frac{x^3+z^5}{\sqrt{\omega}}$

$\frac{W_m}{W_f}$

\mathcal{delhi}

$\frac{\alpha+\epsilon}{\lambda}$\mathcal{delhi}

$\frac{\alpha+\epsilon}{\lambda}$

integrals

$\int{x^2}dx$

$\int_0^4{x^3dx}$

$\iint{xydxdy}$

$\int_0^\infty\int_0^1xydxdy$

$\{abc\}$

differentials

$\frac{dy}{dx}$

$A\neq{B}$

$A\neq B$

$A \subset B$

$A \rightarrow B$, $A \uparrow B$,$A \Leftarrow B$

$\bigg \{\frac{W_m}{W_f}\bigg\}^*$

$\mathbf{A}\cdot\mathbf{B}$, $\mathbf{A}\times\mathbf{B}$

calligraphic letters

$\mathcal{ANDCOLLEGE}$

$\mathcal{A~N~D~COLLEGE}$

$\frac{\partial y}{\partial x}$

Matrices

$\begin{matrix}0 & 1 & 2\\3 & 4 & 5\end{matrix}$

$\begin{pmatrix}0 & 1 & 2\\3 & 4 & 5\end{pmatrix}$

$\begin{bmatrix}0 & 1 & 2\\3 & 4 & 5\end{bmatrix}$

$\begin{vmatrix}0 & 1 & 2\\3 & 4 & 5\end{vmatrix}$

$\begin{Vmatrix}0 & 1 & 2\\3 & 4 & 5\end{Vmatrix}$

$\triangle x\triangle p\geq \hbar$

Maths mode accent

$\hat{A}$, $\vec{A}$, $\bar{A}$, $\tilde{A}$

$\pm2^0C\longleftrightarrow$

$Fe^{3+}$

stackrel

$A\stackrel{heat}{\longrightarrow}B$

$\bar{h}$

$\hbar$

$\triangle{x}\triangle{p}\geq\hbar$

$\nabla^2{x}$ <flash>file=Tribal Economy of India- NGOs PPT.swf|width=800|height=350|quality=best/flash>