User:Isma/Chemistry Resources:Acids and Bases

From WikiEducator

Jump to:navigation, search




Objectives

At the end of this topic you should be able to:

  1. Define Acid and Bases
  2. Explain the properties of acids and bases
  3. Predict the products of reactions of different acids and bases
  4. Differentiate between acidic, amphoteric and basic oxides
  5. State the Bronsted-Lowry theory of acids and bases
  6. Explain how neutralization reactions may be monitored




Contents

ACIDS AND BASES


Acids

Acids are substances, which ionize in water solutions or in aqueous medium) to produce hydrogen ions. Some ionize more than others. The more H+ ions the acid releases, the stronger is the acid. The following equations show the ionization of sulphuric acid and phosphoric acid.

H2SO4 (aq) ===>   2 H+  (aq)  +  SO4 2-  (aq)
H3PO4 (aq) ===>  3 H+ (aq)   +   PO4 3- (aq)

Bases

Bases are substances, which ionize to produce hydroxide ions in water solutions (or in aqueous medium)

         NaOH (aq) ===> Na+   +   OH-
COMMON ACIDS COMMON BASES
Hydrochloric acid, HCl Sodium hydroxide, NaOH
Methanoic acid, HCOOH Potassium hydroxide, KOH


PROPERTIES OF ACIDS

  • Acids taste sour. Citric acid is responsible for the sour taste of lemons, limes, grapefruits, and oranges. Acetic acid is responsible for the sour taste of vinegar.


  • Acids turn litmus (or indicator papers) red. Litmus is a vegetable dye that may be either red or blue, depending on the acidity. When a sample of an acid is placed on red litmus paper, the color of the litmus does not change. Red litmus has been previously treated with acid. Adding more acid does not change the red color. However, when the same acid is placed on blue litmus paper, the color turns from blue to red. (Blue litmus has been treated with a base).


  • Certain acids react with metals to form hydrogen gas and a salt. (when a metal takes the place of hydrogen in an acid, the compound that forms is called a salt)

Zn (s) + 2HCl (aq) ===> H2 (g) + ZnCl2 (aq)

Zn (s) + H2SO4 (aq) ===> H2 (g) + ZnSO4 (aq)



Assignment

Answer the following question in your exercise book

Write down the equation for the reactions below

  1. Magnesium + sulphuric acid
  2. calcium+ nitric acid
  3. zinc + nitric acid


Send the Completed Activity Sheet to:

isma_seetal@yahoo.com





NOTE:

The salts of sulphuric acid are always called sulphates (anion is SO4 2- )

The salts of hydrochloric acid are called chlorides (anion is Cl-)

The salts of nitric acid are called nitrates (NO32-)

  • Acids react with bases (alkalis) to form a salt and water. The salt is made from the anion of the acid and the cation of the base. The hydrogen ion of the acid and the hydroxide ion of the base unite to form water.

e.g NaOH + HCl ===> NaCl + H2O


  • They have pH numbers less than 7

The concentration of hydrogen ions is commonly expressed in terms of the pH scale. The pH scale measures how acidic or basic a substance is. The pH scale ranges from 0 to 14. The lower the concentration of H+ ions, the higher the pH


A pH of 7 is neutral. A pH less than 7 is acidic. A pH greater than 7 is basic.


The pH Scale - Acids and Alkalis

The colours of solutions with universal indicator

An indicator is a substance or mixture of substances that when added to the solution gives a different colour depending on the pH of the solution.

Other common indicators used in the laboratory (often used in titrations)

Indicator colour in acidic solutions pH<7 colour in neutral solutions pH=7 colour in alkaline solutions pH >7
Litmus solution red purple blue
phenolphthalein colourless colourless pink
methyl orange Red/orange yellow yellow


  • Acids react with carbonates to form a salt, carbon dioxide and water

e.g CaCO3(s) + 2HNO3(aq)===> Ca(NO3)2(aq) + H2O(l) + CO2 (g)


  • Acids react with metal oxides to form a salt and water.
        e.g ZnO(s) + 2HCl(aq)===> ZnCl2(aq) + H2O(l)



Activity

Mini-rocket launch

This fun activity can be carried out using common household products and materials. Adult supervision is recommended.


What you need:

  • Rocket fuel- an Alka Seltzer tablet (or if you can't get any, some bicarbonate of soda and vinegar will work)
  • Some warm water
  • 35mm film container
  • Thin A4 card


Procedure:


1. Make a tube out of some of the card by wrapping around the film container (you need to be able to get to the lid to snap it closed as quick as possible)


2. Make a cone out of some card and use as the nose of your rocket. Make some rocket fins too




3. Put 1/2 of an Alka Seltzer tablet into the container and 1/3 fill with warm water


4. Snap the lid on as fast as you can (or it won't work) and turn upside down


5. Stand back and watch the rocket launch (don't touch till the reaction has stopped)


6. Try varying the amount of water, amount of tablet and temperature of the water

(If you want to use vinegar and bicarbonate of soda instead, you'll want to dissolve the bicarbonate of soda in around 1/4 of water and add an equal volume of vinegar to start the reaction)


Background information

You may be wondering what acids and bases have to do with Alka Seltzer - well, the tablets are in fact made from sodium bicarbonate(base) and dehydrated citric acid, this makes them fizz when you drop them in water. This is why you can replace the tablet with vinegar (or lemon juice) and baking powder in the experiment. The reaction produces carbon dioxide gas and it is this that launches the rocket. The reaction is faster if you use warm water and this will make the rocket go higher.





Strong acids

A strong acid is an acid, which is completely dissociated into its ions in aqueous medium e.g sulphuric acid


e.g H2SO4 (aq)===> 2 H+ (aq) + SO42- (aq)


A weak acid is one, which is not completely dissociated into its ions in aqueous medium e.g ethanoic acid


e.g CH3COOH ===> CH3COO- + H+


Question


A strong acid and weak acid would indicate low pH values. In which case would the pH be lower?


Discussion

Discuss whether all acids are dangerous.



PROPERTIES OF BASES

Bases which are soluble in water are called alkalis e.g. NaOH sodium hydroxide, KOH potassium hydroxide or Ca(OH)2 calcium hydroxide.


  • Alkaline solutions are slippery or soapy to the touch


  • All alkalis have a pH greater than seven


  • They turn red litmus blue - this is how you test for an alkali


  • They will react with acids to form a salt and water. This reaction is called a neutralization reaction. During a neutralization reaction equal amounts of H+ ions from the acid combine with equal amounts of OH- from the alkali to form H2O


e.g NaCl + NaOH ===> NaCl + H2O


  • All the alkalis except ammonia will react with ammonium compounds driving ammonia out.


e.g Ca(OH)2 (s) + 2NH4Cl (s)===> CaCl2(s) + H2O(g)

                                             +2NH3(g)


Weak and strong alkalis

A weak alkali is one, which is not completely dissociated into hydroxide ions in aqueous medium


NH3 + H2O ===> NH4+ + OH-


A strong alkali is one, which dissociates completely into hydroxide ions in aqueous medium.

NaOH ===> Na+ + OH-


Tracking a neutralization

When you add an alkali to an acid, you can monitor the neutalization process in several ways


  • pH


As H+ ions are removed the pH of the solution rises. You can follow the changes in pH using either universal indicator or a pH meter.


  • Conductivity


As H+ ions get removed, the solution is less able to conduct electricity. Conductivity reaches its lowest when neutralization is complete.


  • Temperature


Neutralization is exothermic. So the temperature of the solution rises until the reaction is complete. This can be observed using a thermometer. Other bases include Metal oxides, metal hydroxides, metal carbonates, metal hydrogen carbonates, ammonia solution


The following bases produce a salt and water when reacted with acids


  • Metal oxide + acid ===> metal salt + water


e.g CuO(s) + H2SO4(aq) ===>CuSO4(aq) + H2O(l)


  • Metal hydroxide + acid à metal salt + water

e.g Ca(OH)2(s) + 2HCl(aq)===>CaCl2(aq) + 2H2O(l)

  • Ammonia solution + acid à ammonium salt + water

e.g NH3(aq) + HCl(aq)===>NH4Cl(aq)


The following bases produce a salt, water and carbon dioxide


  • Metal carbonates + acid ===>metal salt + water + carbon dioxide


MgCO3(s) + H2SO4(aq)===> MgSO4(aq) + H2O(l) + CO2


Metal hydrogen carbonates+ acid ===>metal salt + water + carbon dioxide


NaHCO3(s) + HNO3(aq) ===> NaNO3(aq) + H2O(l) + CO2


ACIDS AND BASES IN TERMS OF PROTON TRANSFER

The bronsted-Lowry theory of acids and bases

An acid is a "proton donor" (Hydrogen ion, H+ donor). A base is a "proton acceptor" (Hydrogen ion, H+ acceptor)


COMMON USES of acids and bases

Bases


  • To neutralize acidic soils


CaO, calcium oxide that is alkaline in nature is put on soil that is too acidic for healthy plant growth. A neutral pH is desirable for plant growth. Powdered limestone (CaCO3, calcium carbonate) is slower and less effective. Both are bases and react to neutralise acids in soils. They can be used on a larger scale in farming and rivers and lakes.


  • Indigestion tablets containing magnesium oxide or calcium carbonate are mild alkalis that react by neutralizing excess stomach acidic (hydrochloric acid)


  • Bicarbonate powder or baking powder can be used with sour milk (acidic) for raising action in baking.


The acidic milk reacts with the sodium hydrogen carbonate (NaHCO3) to form carbon dioxide gas to give the rising action


  • Ants sting venom often contains methanoic acid ('formic acid') which can have a pH of 3 and is presumably 'soothed' by mild alkalis.


Wasp stings can be neutralized with vinegar. Why? Bee stings can be neutralized with baking soda. Why?


Acids

Sulphuric acid is used in car batteries Citric acid is used in beverages


USES of bases in industry

  • Sodium hydroxide is used in the manufacture of soap (saponification)


  • Ammonia is used in the manufacture of fertilizers such as ammonium sulphate,

NH4)2SO4 and ammonium nitrate, NH4NO3


  • Neutralising harmful sulphur dioxide gas (acidic, irritating and toxic SO2) in power station smoke from burning fossil fuels, by absorbing it in alkaline calcium hydroxide solution (limewater)


Types of oxides

There are four types of oxides:

  • BASIC OXIDES
  • ACIDIC OXIDES
  • NEUTRAL OXIDES
  • AMPHOTERIC OXIDES


BASIC OXIDES


Oxides formed between metals and oxygen are known as Basic Oxides (metallic oxides). These oxides have basic character.

4Na + O2+ ===> 2Na2O


ACIDIC OXIDES


Oxides formed between non-metals and oxygen are known as acidic oxides. These oxides have acidic character


S + O2 ===> SO2 C + O2 ===> CO2


NEUTRAL OXIDES


Neutral oxides are those oxides, which in contact with water produce neither an acid nor a base. The aqueous solution of these oxides have a neutral character.

For e.g:


H2O, NO, N2O


AMPHOTERIC OXIDES

These are the oxides of certain metals such aluminium, zinc and tin which possesses dual properties of an acid and a base.


2Zn + O2 ===> 2ZnO

4Al + 3O2 ===> 2Al2O3


PREPARATION OF SALTS

Metal + acid


Zinc + sulphuric acid


Excess metal is added to some acid (until some of the metal remains unreacted) The excess metal is removed by filtration. The filtrate is heated to evaporate some of the water. Then it is left to cool. Crystals of salt will start forming.


Question


This method is suitable for metals like magnesium, aluminium, iron and zinc but not for sodium or gold. Explain why.


Insoluble base (e.g copper oxide) + acid


The method is the same as the one described above


Alkali (soluble base) + acid


Sodium hydroxide + hydrochloric acid


It is difficult to know when the reaction is over. Hence a titration is performed using a suitable indicator to find the volume of alkali required to neutralize a certain volume of acid. This can be obtained from the burette readings. The reaction is carried out again but this time there is no need for an indicator. The rite volume of acid and alkali are mixed to form the salt. The solution is heated to evaporate some of the water and left to cool. Crystals of salt are thus obtained.


Making insoluble salts

Soluble salts can be crystallized out from aqueous solutions. However not all salts are soluble:


Notice that nitrates and most chlorides are soluble. If we want to make an insoluble salt, we can react together two soluble salts in a precipitation reaction


e.g

AgNO3 + NaCl===> AgCl + NaNO3

(soluble)(soluble) (insoluble) (soluble)

The steps for obtaining the precipitate are described below


Solutions of the 2 soluble salts are mixed The precipitate is filtered out It is rinsed with distilled water Then it is put in a warm oven to dry

To precipitate an insoluble salt you must mix a solution that contains its positive ions with one that contains its negative ions.

e.g To precipitate barium sulphate a solution of barium chloride and magnesium sulphate can be mixed.


Making insoluble salts

Salts containing two elements can be made by direct chemical reaction. E.g if iron is heated in chlorine, FeCl3 is formed. Write the equation for the reaction.




Create a book
Bookmark and Share