Caribbean Secondary Education Certificate - Information Technology/Multitasking, Multiprocessing and Multiprogramming

From WikiEducator
Jump to: navigation, search


While a computer may be viewed as running one gigantic program stored in its main memory, in some systems it is necessary to give the appearance of running several programs simultaneously. This is achieved by having the computer switch rapidly between running each program in turn. One means by which this is done is with a special signal called an interrupt which can periodically cause the computer to stop executing instructions where it was and do something else instead. By remembering where it was executing prior to the interrupt, the computer can return to that task later. If several programs are running "at the same time", then the interrupt generator might be causing several hundred interrupts per second, causing a program switch each time. Since modern computers typically execute instructions several orders of magnitude faster than human perception, it may appear that many programs are running at the same time even though only one is ever executing in any given instant. This method of multitasking is sometimes termed "time-sharing" since each program is allocated a "slice" of time in turn. Before the era of cheap computers, the principle use for multitasking was to allow many people to share the same computer. Seemingly, multitasking would cause a computer that is switching between several programs to run more slowly - in direct proportion to the number of programs it is running. However, most programs spend much of their time waiting for slow input/output devices to complete their tasks. If a program is waiting for the user to click on the mouse or press a key on the keyboard, then it will not take a "time slice" until the event it is waiting for has occurred. This frees up time for other programs to execute so that many programs may be run at the same time without unacceptable speed loss.


ome computers may divide their work between one or more separate CPUs, creating a multiprocessing configuration. Traditionally, this technique was utilized only in large and powerful computers such as supercomputers, mainframe computers and servers. However, multiprocessor and multi-core (multiple CPUs on a single integrated circuit) personal and laptop computers have become widely available and are beginning to see increased usage in lower-end markets as a result. Supercomputers in particular often have highly unique architectures that differ significantly from the basic stored-program architecture and from general purpose computers.

They often feature thousands of CPUs, customized high-speed interconnects, and specialized computing hardware. Such designs tend to be useful only for specialized tasks due to the large scale of program organization required to successfully utilize most of the available resources at once. Supercomputers usually see usage in large-scale simulation, graphics rendering, and cryptography applications, as well as with other so-called "embarrassingly parallel" tasks.


In the early days of computing, CPU time was expensive, and peripherals were very slow. When the computer ran a program that needed access to a peripheral, the CPU would have to stop executing program instructions while the peripheral processed the data. This was deemed very inefficient. The first efforts to create multiprogramming systems took place in the 1960s. Several different programs in batch were loaded in the computer memory, and the first one began to run. When the first program reached an instruction waiting for a peripheral, the context of this program was stored away, and the second program in memory was given a chance to run. The process continued until all programs finished running. Multiprogramming doesn't give any guarantee that a program will run in a timely manner. Indeed, the very first program may very well run for hours without needing access to a peripheral. As there were no users waiting at an interactive terminal, this was no problem: users handed a deck of punched cards to an operator, and came back a few hours later for printed results. Multiprogramming greatly reduced the waiting. The early OS/360 primary control program (PCP) followed the above model but was replaced the very next year, 1967, by MFT which limited the amount of CPU time any single process could consume before being switched out.


  1. Multitasking & Multiprocessing
  2. Multiprogramming