1 FB 1 is zinc powder, Zn .
FB 2 is $0.8 \mathrm{~mol} \mathrm{dm}^{-3}$ copper sulphate, CuSO_{4}.
You are required to determine the temperature and enthalpy changes for the following reaction.

$$
\mathrm{Zn}(\mathrm{~s})+\mathrm{CuSO}_{4}(\mathrm{aq}) \rightarrow \mathrm{Cu}(\mathrm{~s})+\mathrm{ZnSO}_{4}(\mathrm{aq})
$$

(a) Accurately weigh, to two decimal places, an empty weighing bottle. Place between 2.90 g and 3.00 g of FB 1, zinc powder, into the weighing bottle. Record your weighings in Table 1.1 below. If your balance has a Tare facility, do not use it.

Table 1.1 - Weighing of FB 1

mass of empty weighing bottle	$/ \mathrm{g}$	$\mathbf{1 0 . 0 0 0}$
mass of weighing bottle + FB 1	$/ \mathrm{g}$	$\mathbf{1 2 . 9 5 7}$
mass of weighing bottle + residual FB 1	$/ \mathrm{g}$	$\mathbf{1 0 . 0 0 4}$
mass of FB 1 placed in plastic cup	$/ \mathrm{g}$	

[2]

(b) Place the plastic cup in the $250 \mathrm{~cm}^{3}$ beaker provided and pipette $25.0 \mathrm{~cm}^{3}$ of FB 2 into the plastic cup.

Stir gently with the thermometer and take the temperature of the solution every half minute for $2^{1 / 2}$ minutes. Record the temperature readings in Table 1.2 overleaf on page 4.

At exactly 3 minutes, add the FB 1 from the weighing bottle to the plastic cup.

Do not try to read the temperature at 3 minutes.

Stir the mixture thoroughly, and continue to stir and record the temperature every half minute from $31 / 2$ minutes to 15 minutes.
(c) Reweigh the weighing bottle and any residual zinc powder and record the mass in Table 1.1 above.

time /min	temperature $/{ }^{\circ} \mathrm{C}$	time /min	temperature $/{ }^{\circ} \mathrm{C}$
0	22.5	8	42.8
1/2	22.5	$81 / 2$	42.8
1	22.5	9	42.6
$11 / 2$	22.5	91/2	42.6
2	22.5	10	42.6
$21 / 2$	22.5	101/2	42.4
3		11	42.4
$31 / 2$	48.2	$11 / 1 / 2$	42.4
4	46.5	12	42.2
$41 / 2$	45.1	$12^{1 / 2}$	42.0
5	44.4	13	42.0
$51 / 2$	43.9	$131 / 2$	42.0
6	43.5	14	42.0
$61 / 2$	43.2	$141 / 2$	42.0
7	43.0	15	42.0
$71 / 2$	43.0		

(d) Plot a graph of temperature against time on the grid opposite.
(e) Extrapolate the cooling section of your graph back to time $=3$ minutes and read the corresponding temperature.

Estimated temperature $=$ \qquad ${ }^{\circ} \mathrm{C}$

Use this value to obtain the temperature change produced by the reaction.

Temperature change $=$ \qquad ${ }^{\circ} \mathrm{C}$

temperature

$1{ }^{\circ} \mathrm{C}$

(f) Calculate how many moles of zinc were added to the plastic cup.
[A_{r} : Zn, 65.4.]
(g) Calculate how many moles of copper sulphate, CuSO_{4}, were added to the plastic cup.
(h) Calculate the heat energy produced when the zinc is added to the aqueous copper sulphate in the plastic cup.
[You may assume that 4.3 J are required to raise the temperature of $1 \mathrm{~cm}^{3}$ of any dilute solution by $1^{\circ} \mathrm{C}$.]
(i) Calculate the enthalpy change, H, for the reaction. Include the sign and units in your answer.

$$
\mathrm{Zn}(\mathrm{~s})+\mathrm{CuSO}_{4}(\mathrm{aq}) \rightarrow \mathrm{Cu}(\mathrm{~s})+\mathrm{ZnSO}_{4}(\mathrm{aq})
$$

$$
H=
$$

