1 FB 1 is zinc powder, Zn.

FB 2 is 0.8 mol dm⁻³ copper sulphate, CuSO₄.

You are required to determine the temperature and enthalpy changes for the following reaction.

$$Zn(s) + CuSO_4(aq) \longrightarrow Cu(s) + ZnSO_4(aq)$$

(a) Accurately weigh, to two decimal places, an empty weighing bottle. Place between 2.90 g and 3.00 g of **FB 1**, zinc powder, into the weighing bottle. Record your weighings in Table 1.1 below. If your balance has a Tare facility, do **not** use it.

Table 1.1 - Weighing of FB 1

mass of empty weighing bottle	/g	10.000
mass of weighing bottle + FB 1	/g	12.957
mass of weighing bottle + residual FB 1	/g	10.004
mass of FB 1 placed in plastic cup	/g	

[2]

(b) Place the plastic cup in the 250 cm³ beaker provided and pipette 25.0 cm³ of **FB 2** into the plastic cup.

Stir gently with the thermometer and take the temperature of the solution every half minute for $2\frac{1}{2}$ minutes. Record the temperature readings in Table 1.2 overleaf on page 4.

At exactly 3 minutes, add the **FB 1** from the weighing bottle to the plastic cup.

Do not try to read the temperature at 3 minutes.

Stir the mixture thoroughly, and continue to stir and record the temperature every half minute from $3\frac{1}{2}$ minutes to 15 minutes.

(c) Reweigh the weighing bottle and any residual zinc powder and record the mass in Table 1.1 above.

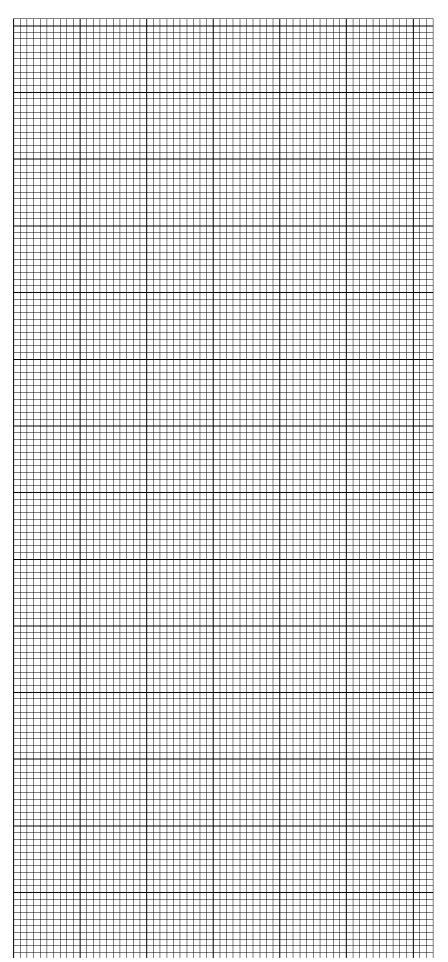
Table 1.2 – Temperature readings

time/min	temperature/°C	time/min	temperature/°C
0	22.5	8	42.8
1/2	22.5	81/2	42.8
1	22.5	9	42.6
11/2	22.5	91/2	42.6
2	22.5	10	42.6
21/2	22.5	101/2	42.4
3		11	42.4
31/2	48.2	111/2	42.4
4	46.5	12	42.2
41/2	45.1	121/2	42.0
5	44.4	13	42.0
5½	43.9	131/2	42.0
6	43.5	14	42.0
61/2	43.2	141/2	42.0
7	43.0	15	42.0
7 ½	43.0		

[1] + [8]

(d) Plot a graph of temperature against time on the grid opposite. [3]

(e) Extrapolate the cooling section of your graph back to time = 3 minutes and read the corresponding temperature.


Estimated temperature =°C

Use this value to obtain the temperature change produced by the reaction.

Temperature change =°C

[1]

temperature /°C

(f) Calculate how many moles of zinc were added to the plastic cup. $[A_r: Zn, 65.4.]$

[1]

(g) Calculate how many moles of copper sulphate, CuSO₄, were added to the plastic cup.

[1]

- (h) Calculate the heat energy produced when the zinc is added to the aqueous copper sulphate in the plastic cup.
 - [You may assume that $4.3\,\mathrm{J}$ are required to raise the temperature of $1\,\mathrm{cm}^3$ of any dilute solution by $1\,^\circ\mathrm{C}$.]

[1]

(i) Calculate the enthalpy change, H, for the reaction. Include the sign and units in your answer.

$$Zn(s) + CuSO_4(aq) \rightarrow Cu(s) + ZnSO_4(aq)$$

H =[1]

[Total: 19]