6.

Problem 11.56P (HRW)

A uniform thin solid block of mass M and edge lengths a and b is as shown in the figure. We have to calculate its rotational inertia about an axis through one corner and perpendicular to the large faces.

Solution:

We use the result that the rotational inertia of a thin slab of edges a and b , and mass M about a vertical axis passing through its centre of mass is
$I_{c m}=\frac{1}{12} \times M\left(a^{2}+b^{2}\right)$.
Distance of any of the corners from the centre of mass is $\frac{1}{4}\left(a^{2}+b^{2}\right)$.

Applying the parallel axis theorem, we get

$$
\begin{aligned}
I_{\text {corner }} & =\frac{1}{12} \times M\left(a^{2}+b^{2}\right)+\frac{1}{4} \times M\left(a^{2}+b^{2}\right) \\
& =\frac{1}{3} \times M\left(a^{2}+b^{2}\right)
\end{aligned}
$$

