- 1. Addition of a strong acid to a solution of acetic acid at equilibrium (HOAc + H_2O < = > H_3O^+ + OAc^-) would cause the: - a. acetate ion concentration to decrease. - b. acetate ion concentration to increase. - c. pH to increase. - d. hydroxide ion concentration to increase. - e. None of the above is correct. - 2. Calculate to a first approximation the molar concentration of hydronium ion in a 0.171 M solution of benzoic acid (HOBz, a monoprotic weak acid with $K_a = 6.5 \times 10^{-5}$). - 3. Consider the following data for the series of hydrogen halide Bronsted acids, - 4. Acid K_a - 5. HF 7.2 x 10⁻⁴ - 6. HCl 1 x 10⁶ - 7. HBr 1×10^9 - 8. HI 3×10^{9} Which of these Bronsted acids would have the weakest conjugate base? - a. HF - b. HCI - c. HBr - d. HI - 9. Shown below is a titration curve for the titration of NH₃ (a weak base) with HCl (a strong acid). At which point are the amounts of the acid and the base stoichiometrically equivalent? - a. Point A - b. Point B - c. Point C - d. Point D - e. Point E - 10. Benzoic acid, $C_6H_5CO_2H$, is a weak acid ($K_a = 6.3 \times 10^{-5}$). Calculate the initial concentration (in M) of benzoic acid that is required to produce an aqueous solution of benzoic acid that has a pH of 2.54. - 11. Which of the following weak acid dissociation constants would result in the smallest degree of dissociation? - a. $K_a = 1.0 \times 10^{-2}$ - b. $K_a = 1.0 \times 10^{-3}$ - c. $K_a = 1.0 \times 10^{-4}$ - d. $K_a = 1.0 \times 10^{-5}$ - 12. Addition of sodium acetate to an acetic acid solution at equilibrium will cause: - a. no change in H₃O⁺ concentration. - b. H₃O⁺ concentration to decrease. - c. H₃O⁺ concentration to increase. - d. concentrations of all species to increase. - e. a decrease in hydroxide concentrations. - 13. What is the H_3O^+ concentration in a 0.17 M solution of a weak acid, HA, with a dissociation constant of 3.21 x 10^{-6} . - 14. Calculate the pH of an aqueous solution prepared to contain 1.3×10^{-3} M sodium nitrite (NaNO₂) if the acid dissociation equilibrium constant, K_a , for nitrous acid (HNO₂) is 5.1×10^{-4} . - a. 3.1 - b. 5.1 - c. 7.0 - d. 7.3 - e. 10.9 - 15. The very first disinfectant used by Joseph Lister was called "carbolic acid". This substance is now known as phenol (PhOH). What is the H_3O^+ ion concentration in a 0.10 M solution of phenol? [PhOH: $K_a = 1.0 \times 10^{-10}$] - a. 1.0×10^{-11} - b. 3.2×10^{-5} - c. 5.0×10^{-12} - d. 3.2×10^{-6} - 16. The sweetener, saccharin, is a weak monoprotic acid with $K_a = 2.1 \times 10^{-12}$. Calculate the H_3O^+ concentration in a solution that contains 1.0×10^{-2} mole of saccharin in 1.00 L of otherwise pure water. - a. 1.4×10^{-7} - b. 1.8×10^{-7} - c. 2.1×10^{-12} - d. 2.1 x 10⁻¹⁴ - 17. When would the pH of a solution prepared by adding sodium formate to formic acid be equal to the pK_a of formic acid, HCO₂H? - a. when $[HCO_2H] < [HCO_2]$ - b. when $[HCO_2H] = [HCO_2]$ - c. when $[HCO_2H] > [HCO_2]$ - d. the pH of this buffer will never equal the pKa of formic acid. - 18. Calculate the pH of a buffer prepared by mixing 0.10 mol of sodium formate and 0.05 mol of formic acid in 1.0 L of solution. [HCO₂H: $K_a = 1.8 \times 10^{-4}$] - a. 1.8×10^{-4} - b. 3.44 - c. 4.05 - d. 5.31 - e. none of these - 19. Many insects discharge sprays containing weak acids as a means of defense. For example, some ants discharge a spray that contains the weak acid, formic acid (HCO₂H). Calculate the pH of a 0.14 M solution of formic acid. K_a (HCO₂H) = 1.8 x 10⁻⁴. - 20. Calculate the pH of a solution prepared by dissolving 0.20 moles of benzoic acid (abbreviated HOBz) and 0.15 moles of sodium benzoate (abbreviated NaOBz) in enough water to make 1.0 L of solution. The acid-dissociation equilibrium constant for benzoic acid is $K_a = 6.3 \times 10^{-5}$. - 21. Calculate the $[OH^{-}]$ (in M) for an acetic acid solution ($K_a = 1.8 \times 10^{-5}$) having a pH of 6.32. - 22. Ascorbic acid is also known as Vitamin C. In a 0.10 M solution of ascorbic acid 2.8% of the ascorbic acid will dissociate. Consider the pH you would measure for a 0.25 M solution of ascorbic acid. Which of the following statements is true? - a. The pH would show that the %-dissociation would be the same in both ascorbic acid solutions. - b. The pH would show that the %-dissociation would be twice as much in the more concentrated acid solutions. - c. The pH of the more concentrated solution would be lower. - d. You must know the K_a value for ascorbic acid before determining which of the above selections is true. - 23. A buffer can be prepared by mixing: - a. a strong acid and its conjugate base. - b. a strong base and its conjugate acid. - c. a weak acid and its conjugate base. - d. a weak acid and a strong acid. - e. all responses above are correct. - 24. Calculate the pH of a solution containing 0.1 M formic acid (a monoprotic weak acid with $K_a = 1.8 \times 10^{-4}$) and 0.1 M sodium formate. - 25. Calculate the molar hydronium ion concentration, $[H_3O^+]$, in a 2.0 x 10^{-3} M solution of hypoiodious acid (HOI, $K_a = 2.3 \times 10^{-11}$). - 26. Which of the following solutions would be best to buffer a solution near pH = 4 $([H_3O^+] = 1.0 \times 10^{-4})$. - a. 1.0 x 10⁻⁴ M HCl - b. 1.0 x 10⁻⁴ M NaOH - c. A solution containing approximately equal concentrations of formic acid ($K_a = 1.8 \times 10^{-4}$) and sodium formate. - d. A solution containing approximately equal concentrations of hypochlorous acid (HOCl, $K_a = 2.9 \times 10^{-8}$) and sodium hypochlorite (NaOCl). - e. A solution containing approximately equal concentrations of ammonia ($K_b = 1.8 \text{ x}$ 10^{-5}) and ammonium chloride. - 27. Which of the following solutions would be an acid/base buffer? - a. 0.1 M HCl, a strong acid - b. 0.1 M acetic acid, a weak acid - c. 0.1 M sodium acetate - d. 0.1 M acetic acid plus 0.1 M sodium acetate - e. pure water - 28. Which of the following diagrams represents a snapshot of a very small portion of a beaker containing a weak acid, HA, dissolved in water? $$HA (I) + H2O (I) <=> H3O+ (aq) + A- (aq)$$ Note that the solvent molecules (i.e., H₂O) are not shown for clarity. 29. Consider the following monoprotic acids, I. CH₃COOH, 10-5 Acetic acid, K_a 1.8 Χ II. 10-4 Formic acid, HCO₂H, K_a 1.8 Χ III. K_a 2.4 10-9 **Hypobromous** acid, HOBr, X IV. acid, 5.1 10-4 **Nitrous** HNO₂, K_a X V. Phenol, C_6H_5OH , $K_a = 1.0 \times 10^{-10}$ Which one of the following aqueous solutions will have the HIGHEST pH? - a. 0.10 M CH₃COONa - b. 0.10 M HCO₂Na - c. 0.10 M NaOBr - d. 0.10 M NaNO₂ - e. 0.10 M C₆H₅ONa - 30. Calculate the mass (in g) of sodium acetate (CH₃COONa, MW = 82.04) that would need to be added to 1.0 L of 0.15 M acetic acid (CH₃COOH, MW = 60.05, K_a = 1.8 x 10⁻⁵) in order to prepare a buffer solution with a pH of 5.12. - 31. The titration curve for a weak acid, HA, is shown below. At which point in the titration is the concentration of the weak acid, HA, equal to the concentration of its conjugate base, A? - a. Point A - b. Point B - c. Point C - d. Point D - e. Point E - 32. Which of the following mixtures would make the best buffer? - a. CH₃CO₂H and NH₄Cl - b. HCl and NaOH - c. CH₃CO₂Na and NH₃ - d. CH₃CO₂Na and NH₄Cl - e. NH₃ and NH₄Cl - 33. Which of the following statements concerning buffer solutions *is not* correct? - a. Buffer solutions have a pH unaffected by the addition of small amounts of a strong acid. - b. Buffer solutions are formed by mixing equal concentrations of a weak acid and the salt of its conjugate base. - c. Buffer solutions are formed by mixing equal concentrations of a weak base and the salt of its conjugate acid. - d. Buffer solutions include a solution of 0.10 M HCl mixed with equal amounts of 0.10 M NaOH solution. - 34. Calculate the pH of a solution prepared by dissolving 0.075 mol of soluble sodium nitrite in 300 mL of 0.25 M nitrous acid. (HNO₂: $K_a = 5.10 \times 10^{-4}$). - 35. What are the relative strengths of the acids in the vessels shown below? Note: (1) each vessel has the same volume and (2) H_2O molecules are not shown for clarity. - a. IV > I > III > II - b. I > II > III > IV - c. III > IV > I > II - d. II > III > IV > I - e. I > IV > III > II - 36. Penicillin G (HPG) is a weak acid ($K_a = 1.74 \times 10^{-3}$). Calculate the pH of a 0.20 M aqueous solution of sodium penicillin G (NaPG). ## USE THE TITRATION CURVE BELOW FOR A WEAK, MONOPROTIC ACID TO ANSWER THE NEXT TWO QUESTIONS. - 37. If the titration curve was obtained by titrating a 25.00-mL sample of the weak acid, what is the molar concentration of the weak acid in the solution? - 38. What is the pK_a of the weak acid? - 39. Calculate $[OH^{-}]$ (in M) for an acetic acid solution ($K_a = 1.8 \times 10^{-5}$) having a pH = 4.32. - 40. Calculate the pH of a 0.35 M aqueous solution of hydrofluoric acid, HF. For HF, $K_a = 7.2 \times 10^{-4}$. - 41. When the salt of a weak acid (e.g., sodium formate) is added to a solution of a weak acid (e.g., formic acid) at equilibrium, the: - a. hydronium ion concentration will remain unchanged. - b. hydronium ion concentration will increase. - c. hydronium ion concentration will decrease. - d. hydroxide ion concentration will decrease. - e. hydronium ion and hydroxide ion concentrations will both decrease. - 42. Calculate the pH of a 5.2×10^{-2} M solution of benzoic acid ($K_a = 6.5 \times 10^{-5}$) in otherwise pure water. - 43. Which of the following solutions would be the best pH buffer? - a. 0.001 M HCI - b. 0.001 M acetic acid - c. 0.1 M acetic acid/0.1 M sodium acetate - d. 0.1 M acetic acid/0.1 M HCl - 44. Consider the following data for the series of hydrogen halide Bronsted acids, - 45. Acid Ka - 46. - 47. HF 7.2 x 10⁻⁴ - 48. HCl 1 x 10⁶ - 49. HBr 1×10^9 - 50. HI 3×10^{9} Which of these Bronsted acids would have the STRONGEST conjugate base? - a. HF - b. HCl - c. HBr - d. HI - 51. The addition of small amounts of either acid or base to a buffer solution causes only small changes in pH because the buffer solution: - a. does not contain either H₃O⁺ or OH⁻. - b. contains large amounts of both H₃O⁺ and OH⁻. - c. reacts with the added acid or base. - d. contains a strong acid and the salt of the strong acid. - e. contains a strong base and the salt of the strong base. - 52. Consider the following monoprotic acids, - I. Acetic acid, CH₃COOH, $K_a = 1.8 \times 10^{-5}$ - II. Formic acid, HCO_2H , $K_a = 1.8 \times 10^{-4}$ - III. Hypobromous acid, HOBr, $K_a = 2.4 \times 10^{-9}$ - IV. Nitrous acid, HNO₂, $K_a = 5.1 \times 10^{-4}$ - V. Phenol, C₆H₅OH, $K_a = 1.0 \times 10^{-10}$ Which of the following aqueous solutions will have the LOWEST pH? - f. 0.10 M CH₃COONa - g. 0.10 M HCO₂Na - h. 0.10 M NaOBr - i. 0.10 M NaNO₂ - j. 0.10 M C₆H₅ONa A pH 2 buffer solution is to be prepared using equal concentrations of a weak acid and the salt of the weak acid. Which of the following acids (and its salt) would be the best choice to prepare the buffer solution? | | acid | Ka | |-----|---|------------------------| | (a) | acetic acid (CH3CO2H) | 1.8 x 10 ⁻⁵ | | (b) | benzoic acid (C ₆ H ₅ CO ₂ H) | 6.4 x 10 ⁻⁵ | | (c) | formic acid (HCO ₂ H) | 1.8 x 10 ⁻⁴ | | (d) | chlorous acid (HClO ₂) | 1.1 x 10 ⁻² | | (e) | None of these. A weak base and the salt of the weak base are required to prepare this solution. | |