

LLeeggaall IIssssuueess RReellaattiinngg ttoo FFrreeee
aanndd OOppeenn SSoouurrccee SSooffttwwaarree

Editors

PROFESSOR BRIAN FITZGERALD
Head of the School of Law

Queensland University of Technology, Australia

GRAHAM BASSETT
Barrister, Bank of New South Wales Chambers, Brisbane, Australia

Essays in Technology Policy and Law Volume 1

ISBN 0-9751394-0-1

 i

Contents

Preface

 PROFESSOR BRIAN FITZGERALD i

Acknowledgements

 PROFESSOR BRIAN FITZGERALD iii

Foreword THE HONOURABLE PAUL LUCAS MP

 iv

Chapter 1:
Licensing and Open Source

 MARK WEBBINK

 1

Chapter 2:
Legal Issues Relating to Free
and Open Source Software

 PROFESSOR BRIAN FITZGERALD and GRAHAM
BASSETT

 11

Chapter 3:
Live from Silicon Valley.
Views of Open Source
Practitioners

 LARRY ROSEN, DAVID SCHELLHASE, YANCY

LIND and BILL LARD

 37

Chapter 4:
Open Source Software: An
Australian Perspective

 PETER C.J. JAMES

 63

Chapter 5:
Security with Free and Open
Source Software

 PROFESSOR WILLIAM J. (BILL) CAELLI

 90

Chapter 6:
The Developers’ Perspective
– Commentaries

 PAUL GAMPE and RHYS WEATHERLEY 116

Chapter 7:
Recent Developments

 GRAHAM BASSETT and NIC SUZOR 123

Biographies 127

 ii

Preface

This publication was given impetus by my spending a sabbatical leave in the heart
of Silicon Valley at Santa Clara University Law School and Red Hat opening a
major office in my hometown of Brisbane Australia.

In Silicon Valley I was able to draw upon a wealth of free and open source
practitioners – a number of them like Larry Rosen and Bill Lard are Santa Clara
alumni – to join with me in running a public seminar on Legal and Business Issues
for Free and Open Source Software on 7 June 2001 much of which is embodied in
Chapter 3 “Live from Silicon Valley”.

On returning to Australia and learning that a number of lawyers in Australia
including Martin McEniery and Anne Fitzgerald (my sister) were acquaintances of
Mark Webbink, legal counsel for Red Hat, it was decided that we would run a
conference at my Law School at the Queensland University of Technology in
Brisbane Australia.

All the while the genius of the free software movement was spreading throughout
the world like wild fire most obviously in the form of the Linux operating system.
The powerful insight that Richard Stallman and his associates at the Free Software
Foundation had discovered was that if you want to structure open access to
knowledge you must leverage off or use as a platform your intellectual property
rights. The genius of Stallman was in understanding and implementing the ethic
that if you want to create a community of information or creative commons you
need to be able to control the way the information is used once it leaves your
hands. The regulation of this downstream activity was achieved by claiming an
intellectual property right (copyright in the code) at the source and then structuring
its downstream usage through a licence (GPL). This was not a simple “giving
away” of information but rather a strategic mechanism for ensuring the information
stayed “free” as in speech. It is on this foundation that we now see initiatives like
the Creative Commons expanding that idea from open source code to open content.

On 3 July 2002 I convened the Legal Issues Relating to Free and Open Source
Software Conference which was opened by The Honourable Paul Lucas MP,
Minister for Innovation and Information Economy for the State of Queensland
Australia. The conference examined legal and business issues facing the
development and implementation of free and open source software. The presenters
were lawyers, academics and software developers expert in the area drawn from
Australia and the USA.

 iii

The Program for the conference was as follows:

• “Welcome Address” — The Honourable Paul Lucas MP (Minister for Innovation
and Information Economy)

• “An Overview of Free and Open Source Software Licences” — Professor Brian
Fitzgerald and Graham Bassett

• “Legal Issues Arising from the Use of Free and Open Source Software in
Business” — Mark Webbink

• “Live from Silicon Valley” — David Schellhase, Larry Rosen and Bill Lard
• “Security and Free and Open Source Software: The SE Linux Experience” —

Professor Bill Caelli
• “The Developer’s Perspective” — Andrew Tridgell, Paul Gampe and Rhys

Weatherley
• “Advising on Free and Open Source Software: An Australian Perspective” —

Peter James and Martin McEniery

This publication embodies much of what was presented at the conference, which
was and still is contemporary and challenging. The issues considered not only
reflect on the past and present but also the future landscape. It is interesting to see
that Australia in 2003 is one of a few countries in the world that has Bills before its
legislative bodies to mandate the consideration of free and open source software by
government departments and agencies.

Note that Chapters 2, 4 and 5 represent fully prepared academic articles while
Chapters 1, 3 and 6 are revised versions of the conference transcript. In my view
they work extremely well together. Marks Webbink’s practical comments work
with Peter James focus on the operation of the GNU GPL in Australia which is
followed by an excellent analysis by Bill Caelli of security and open source issues
which in turn is followed by the very real comments and concerns of leading
software developers.

The issues featured in this volume are directly relevant to legislators and
government officers, academics and practitioners/professionals in the areas of law,
business and information technology, as well as to developers of both proprietary
and free and open source software.

I hope you enjoy reading this volume as much as I have enjoyed learning about the
free and open source software model and the promise it provides not only for
software development but for the dissemination of knowledge more generally.

Professor Brian Fitzgerald
Head of Law School QUT
Brisbane
20 September 2003

 iv

Acknowledgements

The QUT Conference and this publication would not have been possible without
the generous support of Minister Paul Lucas and the Queensland Government
Department of Innovation and Information Economy, QUT Law Faculty, Santa
Clara Law School, Red Hat and the individual presenters and participants at the
conference.

The enthusiasm and assistance of my co-convenor and co-presenter Graham
Bassett was unwavering and exceptional as was the operational support of my
assistant Suzanne Lewis who worked hard to ensure these projects were
successfully completed.

The QUT Conference was invigorated by the brilliant minds of technology gurus
like Bill Caelli and Andrew Tridgell and the pragmatic legal advice of Mark
Webbink from Red Hat, who gave generously of their time as did all of the
presenters: Minister Paul Lucas, Peter James, Martin McEniery, Larry Rosen, Bill
Lard, David Schellhase, Paul Gampe and Rhys Weatherley.

Bill Lard ensured we had a link into one of the Sun campuses in Silicon Valley and
allowed us a memorable and near perfect link to Lard, Rosen and Schellhase: Live
from Silicon Valley. Dating back to the Santa Clara Conferences I owe these three
very bright lawyers a huge vote of thanks. QUT AV technicians in particular
Dennis Clark (Technical Development Coordinator) and Ross Hutton (Audio
Visual Technology Assistant) made sure the link to Silicon Valley worked.

Lawyers Adrian McCullagh and Anne Fitzgerald, QUT Vice Chancellor Professor
Peter Coaldrake and QUT Deputy Vice Chancellor Tom Cochrane all supported
the conference through their attendance and involvement in sessions. Carl
Middlehurst gave me some good start-up advice on contacts in Silicon Valley,
while Nic Suzor, Cheranne Bartlett and Sally Hawkins provided first-rate research
assistance.

Thank you.

Professor Brian Fitzgerald
Head of Law School QUT
Brisbane
20 September 2003

 v

Foreword

THE HONOURABLE PAUL LUCAS
Queensland Minister for Innovation and Information Economy

I am pleased to be here today to welcome you to this important conference on
“Legal Issues Relating to Free and Open Source Software”. As you would be
aware, Open Source Software has been the subject of international debate since a
young hacker named Linus Torvalds developed Linux as a hobby in the early
1990s. Having been a lawyer before I became a Minister I recognise, on the one
hand, Open Source Software encourages innovation and entrepreneurship but, on
the other hand, it raises legal issues which must be addressed in a way that helps to
promote commercial development of the ICT industry.

Today is an opportunity to revisit this debate and look at the legal issues associated
with Open Source Software in the 21st century. The Beattie Government Smart
State strategy is about seizing the challenges that come with the information age.1
We recognise that ICT and associated software is having a huge impact across
industry and our daily lives. ICT impacts on how we do business and work, how
we are educated and how we are entertained. We only need to look at our local film
industry to see how the information age is driving development across industry
sectors while also changing how we are entertained. In 1999 the Queensland
Government introduced the Queensland Communication and Information Strategic
Plan 1999-2004 as a blueprint for driving government activity and ICT.2 The
second annual report3 and the plan’s progress shows that Queensland Government
agencies are making significant progress in delivering on the strategies for the key
areas of ICT skills, ICT industry development, e-commerce and
telecommunications infrastructure. The Queensland Government sponsorship of
today’s forum further demonstrates our commitment to developing and pursuing all
aspects of the ICT industry. I think it is important to mention that Queensland
houses the largest e-security research community in the southern hemisphere and
the largest one in the world besides that of the United States. The products we are

1 The aim of the Smart State Initiative is to “develop Queensland as an Asia-Pacific hub for
the new industries of the 21st Century – industries such as biotechnology, information
technology, nanotechnology and communication technology”. See: The Smart State,
[http://www.thepremier.qld.gov.au/smartstate/index.htm].
2 This plan “sets out the Queensland Government’s blueprint, in partnership with business,
industry and the wider community, to achieve its vision of Queenslanders participating in
the information age”. See: [http://www.iie.qld.gov.au/infoecon/stratplan.asp]

 vi

3 See: Queensland Communication and Information Strategic Plan Progress Report 2001,
[http://www.iie.qld.gov.au/publications/comminfo/default.asp#prog2001].

generating here in Queensland are regarded as the best in the world and this
industry is growing from strength to strength.

Since 11 September 2001 many companies are developing ICT risk management
strategies. The Queensland Government is moving to reinforce its already strong
ICT security. Without going into detail, people should be reassured that a
considerable amount of effort is expended to ensure Queensland has IT systems
that are as secure as possible. According to the annual PWC technology forecast
released in May, one of the challenges facing Australian companies over the next 2
years will be evaluating potential new software components and business
applications.4 The report revealed that CEOs will have to make some hard
decisions about moving from current solutions to next generation systems and that
there is a global trend towards increasing use of Open Source Software as an
alternative to commercially licenced products.

At this point it is unclear whether this move is signalling a culture shift where
companies recognise the role of innovation as well as cost efficiency in commercial
competitiveness. Regardless, this is good news for the Open Source movement that
has been prevalent in the technical culture for years but is only now breaking out
into the commercial world. Allowing source code to be distributed freely and
developed, used, copied or modified is certainly conducive to innovation and
entrepreneurship that is vital to global competitiveness in the 21st century.

Open Source software provides a cost effective solution to start-up companies and
provides a forum for testing ideas before they go to market. It allows for quick and
innovative desktop solutions where the consequences are minimal if anything goes
wrong or if a piece of software ceases to exist or be upgraded. However, history
shows that freeware does not remain free for long once support is needed and there
are claims that Open Source Software threatens security and of course legal rights.
Combining free software with commercial software could violate a company’s
intellectual property rights and begs the question of where liability rests if
something goes wrong, especially where third parties are involved.

I will not attempt to go into the ins and outs of these issues as that is what you will
be doing today and you will have some international experts who are here and who
will speak from first hand experiences in the field. I would like to mention that the
premise underlining Open Source Software is similar to the position that the
Queensland Government has taken in developing its Information Standard No. 33 –
Information Access and Pricing.5 This standard promotes a wide dissemination of

4 PriceWaterhouseCoopers Annual Technology Forecast, “Aust CIOs becoming business
clairvoyants”, ZDNet Australia, 27 May 2002, www.zdnet.com.au

 vii

5 “Government information must be made accessible, directly or indirectly, to citizens of
Queensland and those doing business in Queensland at no more than the cost of provision
and in a manner which provides reasonable access to the community unless statutory
requirements vary the access and pricing arrangements. Certain types of information will be

http://www.zdnet.com.au/

Queensland public sector information as a key to realising the Smart State vision
with an information economy. The rationale is to free up Government information
held by agencies and to provide it at minimal cost to Queenslanders and people
doing business in Queensland. This is consistent with a notion of free software
contributing with the exchange of ideas and the public good. But, at the same time,
the Government seeks to apply best practice principles to all of its operations
which at this point commands priority. The situation demonstrates how the issues
associated with Open Source Software are often double-edged swords. At best we
should strive for a model where Open Source and proprietary software can co-exist
for the benefit of all stakeholders within the ICT industry and across the many
sectors that are impacted. It is vital that a legal framework is developed to support
the model. While Open Source software provides a cost efficient and innovative
solution for many companies it also raises legal and security issues that are yet to
be fully addressed. The challenge lies in striking a balance between the needs of a
range of stakeholders and developing an appropriate legal framework.

I look forward to hearing about the outcomes of the open and frank discussions that
you will be participating in here today.

 viii

required to be freely available.” See: Information Standard No. 33 Information Access and
Pricing, [http://www.iie.qld.gov.au/comminfo/downloads/is33.pdf].

Chapter 1

Licensing and Open Source∗

MARK WEBBINK
Senior Vice President and General Counsel, Red Hat, Inc., USA

It is exciting to be here also because of a number of reasons that are unique to
Australia. First of all is the strong business climate that you are all enjoying at this
time. I read recently that the Australian economy is one of the strongest economies
in the world right now. It is not the USA economy where it seems that on a daily
basis we are learning of one more management group of a major company that has
undermined their own creditability and undermined the creditability of the US
business by some of their financial reporting. I will have to say that I am proud of
my own company for the diligence in which it records its financial transactions and
in the openness of that reporting.

It’s also exciting to be here because of the open-minded embrace of Open Source
in Australia by the Government, by industry and by academia. This is something
that you do not find right now in the United States, and quite frankly, there is a
good reason for it. It’s because there is one company that owns about 96% of the
desktops in the United States that would rather not see Open Source succeed, and
they are giving it their best shot to make sure that that does not happen. Finally, it’s
exciting to be here because you all provide evidence about what is the best about
Australia. Among those characteristics that I observe are the strong character of the
Australian people and the competitive spirit often times exhibited amazingly in
athletic events. For the relatively small population of Australia, the athletes
perform at incredible levels. I attribute that to the competitive spirit of the people
here. And a final factor is your leadership in applying innovation, not just
innovation, but applying innovation.

When I first joined Red Hat in May 2000 I am afraid I was a little bit of a die-hard
in terms of what my desktop was going to be because I was working on legal
agreements with other companies. I said: ‘I have got to have Microsoft Word’. I
could not deal with the documents back then without it. There were several desktop
applications being used at Red Hat at the time. One loaded on the machine I had
was called Applix which was just horrible. I said to them: ‘I can either be your
general counsel and get work done or I can spend all my time trying to find
documents and trying to update them and then ship them out to people who will

 1

∗ This is a revised version of the transcript from the Legal Issues for Free and Open Source
Software Conference held at QUT in Brisbane Australia on 3 July 2002.

never be able to read them because you cannot ship them out in a document format
they can read’. So for the next 15 months I was one of the few folks at our
corporate headquarters that actually ran a Windows desktop. By last fall I just had
about all I could stand and, thank goodness, Sun released a better version of Star
Office, the 6.0 beta. I said, ‘In for a penny, in for a pound, I am making a change
now’. And granted Star Office is not Open Source in the 6.0 Release, but at least it
runs on Linux and I can use it. What I found is that it works just fine for my
purposes.

At Red Hat we have our internal email called Memo List. Memo List can only be
experienced first hand. Your first experience with it is generally your worst.
Hackers at Red Hat are very free with their advice. While they will often conclude
a message with the letters ianal – ‘I am not a lawyer’ – that does not mean that they
do not still have strong opinions about what the law ought to be, not necessarily
what it is. Debates rage on Memo List. When you first get to Red Hat you think
this is a normal corporation and you post a new policy statement. Then you find
500 people attacking your policy and telling you what is wrong with it. But in time
you learn to channel that energy. I always make sure that in my notes to folks I end
with iaal – ‘I am a lawyer’ and, if anything, I should have an attribution there
IANAH – ‘I am not a hacker’. But with that background and with one final caveat
that my remarks today are based on US law (I have not been admitted to practise
here in Australia, although I was scanning the classifieds this morning to look at all
the positions at the various law schools and thinking how tempting they were).
Some of what I will say can only be appreciated in the context of US law and as
only a US lawyer can appreciate it. I will also provide the caveat that this is not
specifically legal advice; this is simply general legal commentary. If you want
specific legal advice see Brian Fitzgerald or Martin McEniery or some of the others
who are here.

WHAT IS COPYRIGHT?

I am going to walk through some background on copyright. For those of you who
practise law, you will think this is highly trivial but I want to set some context here.
Because I will often have people write to me, and they will say “so and so is
violating our copyright” and, in fact, what they are violating is our trademark rights
or there is a patent issue.

So let us just walk through some very fundamental things about intellectual
property. Copyright, patents and trademarks have some very fundamental
distinctions among them. Patents protect inventions in the form of innovative or
improved products or processes. Patents do not protect ideas, they protect the
application of those ideas. Trademarks are a source identifier. Trademarks may be
applied to goods and processes, whether or not patented, to identify those goods or
services as coming from a particular party. Trademarks may also be used within
copyrighted materials to form advertisements for promotions.

 2

By contrast, copyright protects the original expression of an idea. Software is
protectable under all three of these regimes. The source code of the software is
copyrighted at the time it is written. It may be patentable if some or all of the
software embodies innovative processes or algorithms. As it is promoted for sale it
may have a trademark associated with it to identify the source of that software.

How does copyright arise? Under US law copyright arises immediately upon the
work being fixed in a tangible medium of expression – that includes being recorded
in an electronic form or on a computer or disk even though it cannot be reproduced
or read without that computer or disk.

What rights does the owner of the copyright work have? Pay close attention to
these as we walk through them. The owner of a copyrighted work has the exclusive
right to:

• reproduce the work,
• distribute the work,
• create derivative works,
• perform the work, or
• display the work.

As we will see, these concepts are important to Open Source and free software.

WHAT IS OPEN SOURCE SOFTWARE?

We talked about this a little bit. But here is the definition provided by the Open
Source Initiative. It contains the following rights and obligations:

• No royalty or other fee imposed upon redistribution,
• Availability of the source code,
• Right to create modifications and derivative works,
• May require modified versions to be distributed as the original version plus

patches,
• No discrimination against persons or groups,
• No discrimination against fields of endeavour,
• All rights granted must flow through to and with redistributed versions,
• The license applies to the program as a whole and each of its components,
• The license must not restrict other software, thus permitting the distribution of

open source and closed source software together.

 3

What is free software?

Free software is defined in a slightly different manner by the Free Software
Foundation. It is defined in terms of the freedoms that it provides:

• The freedom to run the program for any purpose,
• The freedom to study how the program works and adapt it to your needs, thus the

requirement that the source code be provided,
• The freedom to redistribute copies so you can help your neighbour,
• The freedom to redistribute copies and the freedom to improve the program and

release your improvements to the public, so that the whole community benefits,
again necessitating the distribution of a source code.

In summary, free software is the freedom to run, copy, redistribute, study, change
and improve software; all those attributes of copyright.

As Richard Stallman is fond of saying “it’s free, as in free speech, not free beer!”.
Note that there is no requirement that you distribute the software at no cost. The
definition of the Open Source Initiative probably encompasses a wider range of
licences. We have heard at least one or two of those mentioned this morning such
as, the BSD licence, the Apache Software Licence, the IBM Public Licence, the
Common Public Licence and there are a whole range of these. And if in fact you
were to look at the licence attributions in Red Hat Linux, which consists of about
2800 different software modules at this stage, you would find that probably half of
those modules are licenced pursuant to the GNU General Public Licence, a sizeable
number are licenced under the Berkley licence, the BSD, and the rest are licenced
under various other open source licences or simply placed in the public domain.

As someone had said previously, in reality there are really few differences between
Open Source and Free Software. The Open Source Initiative adopted the term
Open Source because they thought the term ‘free software’ was confusing. It
implied free as in no charge. I recently suggested to Eben Moglen, who is general
counsel of the Free Software Foundation, that perhaps a better and more apt name
for Free Software would be Freedom Software.

Why did Red Hat choose this open source approach? As stated by the Open Source
Initiative the basic idea behind open source is very simple. When programmers can
read, redistribute, and modify the source code for a piece of software, the software
evolves. People improve it, people adapt it, people fix bugs and this can happen at
a speed that, when one is used to the slow pace of conventional software
development, seems astonishing. The Open Source community has learned that this
rapid evolutionary process produces better software than the traditional closed
source model, in which only a few programmers can see the source and where
everybody else must blindly use an opaque block of bits.

 4

RED HAT BUSINESS MODEL

I will take a second here to digress a little bit and talk some about Red Hat and our
business model because one of the questions that I most commonly have to answer
when I am at conferences is “How does Red Hat make money”? Red Hat is a
combination of a lot of things. It enjoyed a great deal of insight by its founders,
Bob Young and Marc Ewing. It enjoyed a great deal of just plain luck in that Red
Hat went to the public markets at a time when the public markets were very hot and
managed to not only make an initial public offering but also a secondary offering
during that period of time, thus raising a great deal of capital for a company that
was as young as we were. In fact in the fall of 1999, a few months after we went
public, a business analyst said that Red Hat was a successful initial public offering
in search of a business model. There was a degree of truth in it because at the time
of the public offering we had one product, and that was the boxed set that you
could buy at retail. We had no technical support model in place. We had just the
early stages of our educational offerings. We had nothing in place to support
developers. We did not have a concept behind us attracting other software vendors
to migrate to Linux. None of those things existed.

In the three years since our public offering we have gone from one stream of
revenue to over 20 streams of revenue today. We have a wider range of open
source software offerings including different configurations of Linux for different
applications. We have now penetrated the enterprise market, where large
businesses are looking to shift their applications from proprietary software and
hardware to open source software running on generic hardware, thereby creating
significant monetary savings. The Red Hat Certified Engineer designation has
become one of the most sought after designations in the IT industry. And I saw
recently where we have won several awards and have been recognised for the work
that we have done in that area.6 In fact, for those of you who have a technical
background, our Red Hat Certified Engineer designation has been shown to
provide an 11% increase in earning power to those who received the designation.7

We have been leaders in terms of providing educational programs not just in live
offerings, but also via web-based training. We developed a technical support model
that is highly efficient in meeting the needs of our customers. We developed a
developer support model to help other companies port their applications to Linux
or develop applications for Linux. We have done work in the area of embedded
Linux for embedded devices, such as cellular phones, internet devices that are
freestanding, and the General Motor’s Onstar system used for assisting vehicle
owners.

6 Red Hat Training News & Reviews, [http://www.redhat.com/training/news.html]

 5

7 John Roberts, “Key Certifications Grow in Value, Cisco Worth the Most, Red Hat Rising
Fast” CRN, [http://www.crn.com/sections/special/ssurvey/ssurvey02.asp?ArticleID=35952]
18 December 2002.

We have expanded our Linux offering itself into a higher offering called
‘Advanced Server’ which we see as the future of Linux in the enterprise. It’s
receiving widespread kudos at the enterprise level. So we have vastly expanded
what we are able to do in the last 15 months. We have gone from a company that
was regularly losing money, although managing to not borrow cash resources a
great deal, to one that is now approaching operating profitability and has, in fact,
substantiated that the Open Source model can survive in business.

THE GNU GENERAL PUBLIC LICENCE

Let us turn now to licensing and run through a little bit about the GNU General
Public Licence. The GNU General Public Licence is probably the most popular of
the Open Source licences, and I would argue it is the backbone of the Open Source
movement. It is made available by the Free Software Foundation, and I do want to
acknowledge the contributions of Richard Stallman in terms of thought and
leadership and Eben Moglen, their general counsel, in terms of legal leadership in
this area. For those of you who are legal practitioners I will note for you that Eben,
despite significant demands on his time as a fulltime Professor of Law at Columbia
University, is very generous with his time and tries to be very responsive in the
answering of questions. So if you have a tough nut to crack, do not hesitate to write
to him there, and he will wish I had not said that, to volunteer his time.

The GNU General Public Licence provides the following rights:

• The right to copy and redistribute so long as you include a copyright notice and a
disclaimer of warranties,

• You may charge for the cost of distribution and you may offer warranty protection
for a fee,

• The right to make derivative works for your own use,
• The right to distribute derivative works so long as you meet certain conditions.

Those are:

1. To identify the work as being modified
2. That you licence it under the GPL
3. That you provide the licence information interactively if the program

normally runs interactively.

This section and the obligation to licence under the GPL does not apply to works
which are independent works distributed with the GPL work and which will simply
run on GPL works:

 6

• You may distribute the work only in executable forms so long as

o the source code is distributed with the object code, or
o the source code is offered by a written offer valid for a period of least 3 years

to make the source code available for no more than the cost of distribution or
o for non-commercial redistributions, where you have only received the object

code, the notice you have received from the original distributor must be
included

• Finally, you may not impose restrictions on any of these rights.

The GPL has no relevance to the case where a licensee chooses not to redistribute.
For example, if you elect to adopt Red Hat Linux and make modifications to the
Linux kernel, which is licenced pursuant to the GPL, so long as that modified
kernel is only used within your organisation you are under no obligation to either
licence that modification to another party or open source that modification. In this
context, when an organisation is a corporate entity that corporate entity and all of
its controlled subsidiaries are considered the same entity/organisation.

There are three common examples of the application of this redistribution
principle:

1. users who use only GPL binaries as they would any other similar program,
2. users who modify GPL sources to handle internal issues,
3. and users who modify GPL sources and redistribute them for fun and/or profit.

In the first instance the simple use of GPL binaries has no impact on anything else
you may be doing or running. A good example is the use of the GNU Emacs text
editor which is GPL. The use of that text editor to open a file, edit that file, and
save that file has no impact on the file so edited. Similarly, if that same file is an
executable program which you can then compile using the GNU C compiler, again
which is licenced under the GPL, the use of the compiler does not have any impact
on the licence or ownership of the compiled program. Thus the normal use of GPL
software in a commercial environment poses no extraordinary legal problems. The
wide distribution of Linux operating system software over the last several years for
use on commercial web and enterprise servers is ample evidence there is no legal
reason to not use open source software if you happen to think it is better than the
proprietary alternatives.

In the second case, the software was modified for internal use. That by definition
confers to its users access to the internally modified sources. However, there is no
requirement within the GPL that requires internal modifications to be distributed to
another party or that the sources be disclosed to another party. Consequently, each
user is free to modify GPL code for their own purposes without concern for
disclosing trade secrets.

 7

The final case is the one for which the GPL was really written. Users redistributing
modified or unmodified versions of GPL source must obey the GPL’s golden rule
of not adding any downstream restrictions. To the extent that someone wants to
profit from GPL software by using traditional proprietary licence restrictions, such
restrictions will prove difficult if not impossible to enforce.

There are some finer points that I would like to walk through. For example, if the
work that you have written is a database program intended to run on a GPL
operating system like Linux, the mere distribution of the database program with the
operating system on the same CD does not impose the GPL of the operating system
to the database. Good examples of this include Red Hat's good friends at Oracle
who are working hand in hand with us now to make Oracle available on Red Hat
Linux. On the other hand, if modifications are made to that open source operating
system in order to accommodate the database program, then those modifications
are derivative works of the operating system and would need to be made available
under the GPL. This imposition only applies to the derivative sources of the
operating system and not to the database software itself.

Finally, the hardest cases come when proprietary software applications require
modifications to the Open Source operating system in order to ultimately function.
Where the proprietary software is so linked to the Open Source Operating System
this has to raise issues of whether it is one piece of software or two. One must then
examine issues of the type and nature of the modification or link, whether it is
dynamic or static, and whether application interfaces have been used and the
licence pertaining to those interfaces.

The wider the adoption of Open Source software the better understood the
licencing principles pertaining to these specific cases are becoming. However, if
you are not familiar with these issues, you are well advised to consult with a
company that is familiar with the issues or discuss the specifics with a
knowledgeable attorney, and I mentioned earlier Eben Moglen at the Free Software
Foundation. In addition, you can find a discussion of some of these finer points on
the FSF website.8

Some of you may be familiar with the Lesser GPL or have heard of it. The LGPL,
although similar to the GPL in many respects, is intended primarily for use with
libraries. It permits combining those libraries with other source code or linking
with those libraries under certain conditions such that a derivative work is not
created and the greater work is not subject to either the GPL or the LGPL.

 8

8 www.fsf.org

You also heard the term “viral” used in the context of GNU General Public
Licence. Some of the proprietary developers have put out a lot of FUD on the GPL.
For the non-techies, FUD stands for ‘fear, uncertainty and doubt’. Where you
cannot beat somebody on the technical competency of the software, try to scare the
public away from it. This is intended to undermine the confidence of parties who
may be interested in building applications to run on GPL code. It has been asserted
that because the GPL requires all derivative works to be licenced under the GPL,
that the GPL code will in fact infect anything run with it. Well, as I pointed out
before, that is simply not the case. The GPL only applies to derivative works. If
you want to simply run your application on GPL code – no problem. There is no
'infection' if you will. [If you want to see Richard Stallman get excited, use the
term “viral” in his presence.] It is also clearly not the case because the licencing
obligation only applies for the modified code which is redistributed. The GPL
makes very clear that it does not apply to independent programs that merely run
with the GPL code.

One class of open source licenses, and the BSD would be a good example of this,
does not tie itself to derivative works. The other class, and the GPL is the best
example of this but the Open Public Licence and IBM Public Licence are also good
examples, do tie themselves to derivative works, thus ensuring that all downstream
works remain available to the community.

Why does Red Hat use the GNU General Public Licence as its principle licencing
option? Although some of our software code is licenced under other Open Source
licences, we principally use the GPL. We do so because of the obligation imposed
on derivative works, thus extending the Open Source community and preventing
other parties from simply ripping off the open source efforts. I have to tell you that
this has been one of my great challenges in the time that I have been at Red Hat,
and it has been a period of enlightenment for me as well. For that I have to credit
our engineers, because despite time and time again having had debates especially
over the first few years about our business model and about whether we do not
need to have some proprietary offerings, we have consistently come back to the
position that if we are willing to be an Open Source company that it means being
an Open Source company. We will not start to integrate proprietary works into
what we offer in order to provide some monetary benefit to ourselves. This has
been a challenge for us, but I think in terms of our own corporate identity and who
we are, it has been important for us to stay true to that vision.

Why do we not provide warranties or indemnities against infringement? Well, first
the GPL expressly disclaims warranties and Red Hat in particular, is not in a
position to simply assume that obligation on its own. It is not built into our pricing
model as it is with proprietary software. There is no great pool of funds to provide
those sorts of indemnities. In fact, often the software has been provided at no cost.
At the same time there are benefits derived from the software being open and
readily examined.

 9

It is interesting to note that after more than ten years of use no GPL code has been
challenged under claims of infringement. It is also interesting to note that the
Microsoft standard end user licence for most of its products disclaims the warranty
of non-infringement of intellectual property.

How is the GPL enforced? If you were to ask Eben Moglen he would say “to a
large extent it is enforced by mediation”. In fact he is often personally involved in
carrying out that mediation. When the FSF is made aware of GPL violations they
will contact the violating party and work with them to bring their application into
compliance. And 99 times out of 100 the companies do want to be compliant. In all
the years the FSF has been operating, this approach has been consistently effective
in bringing about compliance.

It is again significant to note that after more than ten years of use the GPL itself has
never been challenged in court. To my way of thinking, this is the best evidence of
its durability. At the same time we are not so foolish as to believe that some parties
may not elect to intentionally violate the GPL for purposes of prompting litigation.
Keep in mind that, absent the rights granted under the GPL, there are rights under
copyright and conditions that copyright imposes. A person obtaining GPL software
has no rights under copyright law to make more than a single backup copy and to
use that one copy. They have no right of redistribution. They have no right to make
derivative works. Those are rights that can only be granted by the copyright owner,
and they are granted by the GPL. If the GPL were held unenforceable, all of those
rights would disappear.

As I have mentioned, there have been no court cases to date that have interpreted
the GPL other than to sustain the fact that it is in fact an effective licence intended
to restrict the manner in which the software is distributed. The Planetary Motion
case has been mentioned by some: see Planetary Motion, Inc. v. Techsplosion,
Inc.9 This was a case that came down a few years back. A person involved with the
litigation wrote me an email after it was decided saying that the GPL had been
upheld by the Court. Well, if you read the case, the GPL was mentioned in the
opinion but the case really had to do with trademark law. Similarly there is a court
case pending in Federal District Court in Massachusetts at the present time
involving MySQL and again this case largely involves trademark law. So to date
we do not have specific US court interpretations of the GPL.

 10

9 261 F.3d 1188 (11th Cir. 2001)

Chapter 2

Legal Issues Relating to Free and
Open Source Software

PROFESSOR BRIAN FITZGERALD

BA (Griff) LLB (QUT) BCL (Oxon.) LLM (Harv) PhD (Griff)
Head of the School of Law

Queensland University of Technology, Australia

GRAHAM BASSETT
Barrister, Bank of New South Wales Chambers, Brisbane, Australia

1. INTRODUCTION

1.1 Background

This is a story about the models for distributing software and in particular the
source (or human readable) code of the software. It is a story of many dimensions:
law, politics, social planning, culture along with economics.

In the classic free software scenario embodied in the GNU General Public License
(GPL) software source code is distributed in a manner that is open and free (as in
speech not as in beer) allowing software developers (usually many hundreds,
known broadly as the “hacker community”) further down-the-line to modify and
improve upon the initial software product. The initial distributor of the code
controls its presentation and further dissemination through copyright and contract
law (contractual software license). In general, the down the line developer and
modifier is required to make source code of any derivative work that they
distribute available for all to see. In this process copyright law is used to create a
“copyleft” effect as opposed to a “copyright” effect by mandating that code should
be open and free for all to use in innovation and development of software. By way
of contrast, in a proprietary or closed distribution model source code is not released
and can only be ascertained through decompilation or reverse engineering.

Software code is protected as expression in the form of a literary text under
copyright law. Copyright law will protect the expression of an idea or facts but not
the idea or facts themselves. Patent law and trademark law, amongst other things,

 11

may also bestow legal rights in relation to software.10 Once code is written it can be
protected in copyright law for the life of the author plus fifty years in some
countries and up to seventy years in other countries (USA, Europe). As a general
rule if code is written in the course of employment then the employer will be the
lawful owner of the copyright in that code. Software is generally not sold but
distributed through software (contractual?) licenses. This has led some to say in
relation to software and other informational goods that the “licence is the product”.
In the case of free and open source software the legal regime is built on the back of
copyright in the original code along with the terms of the licence. Therefore the
terms of the licence are crucial to understanding user and exploitation rights
especially in a commercial setting.

1.2 Proprietary and Communal Software Licensing

Software licensing has two approaches — proprietarial and non-proprietarial.

Proprietary methods involve employing a team of programmers and tying them to a
non-disclosure agreement. Cloistered for a period of time, they create, test and
debug their code. Most importantly, copyright is claimed over the resulting code.11
Software is marketed as a copyright license and defined as “any product we make
available for license for a fee”.12 Bill Gates has made it clear that code is zealously
guarded and presented in executable form only: “…a competitor who is free to
review Microsoft’s source code … will see the architecture, data structures,
algorithms and other key aspects of the relevant Microsoft product. That will make
it much easier to copy Microsoft’s innovations, which is why commercial software
vendors generally do not provide source code to rivals”.13

10 B. Fitzgerald, “Digital Property: The Ultimate Boundary?” (2001) 7 Roger Williams
University Law Review 47; B. Fitzgerald and A. Fitzgerald, Cyberlaw: Laws Relating to the
Internet, Digital Intellectual Property and E Commerce (2002) Lexis Butterworths, Sydney
Australia; A. Fitzgerald, B. Fitzgerald, C Cifuentes and P Cook (eds.) Going Digital 2000:
Legal Issues for Electronic Commerce, Multimedia and the Internet (2000) Prospect
Publishing, Sydney.
11 Software has been protected as a literary work under the US Copyright Act since 1980:
Lotus Development Corporation v Borland International Inc 49 F. 3d 807 (1st Cir. 1995),
and under the Australian Copyright Act since 1984: Data Access Corporation v Powerflex
Services Pty Ltd [1999] HCA 49. Article 10(1) of the Agreement on Trade-Related Aspects
of Intellectual Property Rights (TRIPS) Agreement, part of the World Trade Organisation
Agreement of 1994 and binding on all members of the World Trade Organisation (WTO)
provides that: “Computer programs, whether in source or object code, shall be protected as
literary works under the Berne Convention (1971)”. More recently software has been
subject to a vast amount of patenting throughout the world: Welcome Real-Time SA v
Catuity Inc [2001] FCA 445 (Australia); State Street Bank & Trust Co v Signature
Financial Group Inc 149 F. 3d. 1368 (Fed. Cir. 1998) (USA).
12 Microsoft Open License Agreement v 6.0, 1 October 2001, para [1] – applicable from 1
July 2002.

 12

13 State of New York v Microsoft Corporation, Direct Testimony of Bill Gates, 18 April
2002 [http://www.microsoft.com/presspass/trial/mswitness/2002/billgates/billgates.asp] at

Typically, proprietary licenses are sold under a Volume License Product Key
(VPK) and the consumer is held liable for any unauthorized use of this key.14 A
customer can run the program which is defined as the capacity to copy, install, use,
access or display the product for the number of copies authorised. A proprietary
licensee may not “reverse engineer, decompile, or disassemble products except to
the extent expressly permitted by applicable law”.15 This is contrary to the view
that software diversity is best facilitated by reverse engineering.16 Even so, a
proprietary license recognizes that a copyright owner cannot require a licensee to
enter a contract that is prohibited by statute, as is a contract to override reverse
engineering rights in Australia. It is unclear in the US whether the right to
reproduce a program in order to facilitate reverse engineering for the purpose of
interoperability can be overridden by contract.17 A licensee may not rent, lease,
lend or host products.18 In return, the user is offered a limited warranty that the
product will “perform substantially in accordance with our user documentation” for
a period up to ninety (90) days from first running the program.19 Whether the final
product is sold by shrinkwrap or clickwrap license, licensees are dependent on the
vendor for upgrades and patches. Traditionally upgrades enabled a licensee to
purchase modifications when, and, as they saw fit. Microsoft’s Software Assurance
scheme requires a user to buy an upgrade subscription as part of the license of a
product.20 Critics claim that this upgrade scheme applies a fee to the licensee even
if no upgrade is provided in that period and this merely offers a “right to upgrade
that previously existed without any requirement for advanced payment to preserve
the right”.21

Conversely, non-proprietarial software is created by communities of disparate
developers for little commercial gain. Its benefits were propounded by Eric

[307] 20 April 2002; P Galli, “Microsoft Warns SEC of Open-Source Threat”
http://www.eweek.com/article2/0,3959,857673,00.asp Note that a new Microsoft initiative
proposes for security and other reasons that source code will distributed to government
users under the Government Security Program: see P Calli “U.K. Adopts Microsoft’s
Security Program” <http://www.eweek.com/article2/0,3959,854839,00.asp.
14 Note 3, para [4].
15 Note 3, para [7].
16 B. Fitzgerald, C. Cifuentes, A. Fitzgerald and M. Lehmann, “Innovation, Software and
Reverse Engineering” (2001) 18 Santa Clara Computer And High Technology Law Journal
121; B. Fitzgerald “Intellectual Property Rights in Digital Architecture (including
Software): The Question of Digital Diversity?” [2001] EIPR 121.
17 See s 105 Uniform Computer Information Transactions Act (UCITA); Bowers v Baystate
Technologies Inc 64 USPQ 2d. 1065 (Fed. Cir 2002).
18 Note 3.
19 Note 3, para [9a].
20 Note 3, para [11].

 13

21 A NZ company has made a formal complaint about the impact of this new ‘software-as-
service’ paradigm. See “Complaint to the Commerce Commission by Infraserv Limited as
to certain anti-competitive behaviour of Microsoft NZ Limited”, [www.clendons.co.nz],
9 May 2002.

http://www.eweek.com/article2/0,3959,857673,00.asp

Raymond in his work The Cathedral and the Bazaar, first written in May 1997.22
He compares the commercial (non-free) development of software to the building of
large cathedrals, “carefully crafted by individual wizards or small bands of mages
working in splendid isolation, with no beta to be released before its time”.23 Slow
to react, and with too few participants, the cathedral approach is not as effective as
that of the bazaar:

… release early and often, delegate everything you can, be open to the point of
promiscuity … No quiet, reverent cathedral-building here – rather, the Linux
community seemed to resemble a great babbling bazaar of differing agendas and
approaches (aptly symbolized by the Linux archive sites, who'd take submissions from
anyone) out of which a coherent and stable system could seemingly emerge only by a
succession of miracles.24

Raymond identified 17 features of the non-proprietarial system that contributed to
its successful creation of software such as the alternate operating system
GNU/Linux.25 The most important are:

• Good programmers know what to write. Great ones know what to rewrite and
reuse.

• Many programmers build on the efforts of others rather than doing things from
scratch.

• The best programs are written by reacting to a need perceived by programmers.
• Treating users as co-developers allows bugs to be identified quickly and more

effectively.
• Such communities have a scalability of reaction to a perceived problem that

commercial developers even as big as Microsoft have come to realize.26 Raymond
asserts: “[G]iven enough eyeballs, all bugs are shallow”.27

• Programs are best released early and often and feedback sought from users.

Raymond argues developers in such communities are not motivated by commercial
gain. An internal market of reputation exists. The principal role of the project
leader is to facilitate “egoless programming”. On describing the role of a project
leader in such a distributed format, he quotes the words of a Russian anarchist,
Kropotkin:

22 Eric Raymond, The Cathedral and the Bazaar, version 2, 24 August 2000,
<http://www.tuxedo.org/~esr/writings/cathedral-bazaar/cathedral-bazaar/index.html> (27
July 2001).
23 Note 13.
24 Note 13.
25 For a brief overview of the development of GNU/Linux see section 1.3.1 of this paper.
26 In two leaked memos Microsoft admitted to the benefits of non-proprietarial
development methods at Linux and proffered whether such development could be slowed
by court challenges: Bob Trott, “Microsoft Pondering Legal Challenge to Linux”,
CNN.com, November 1998,
<http://www.cnn.com/TECH/computing/9811/06/linux.threat.idg/>, (22 November 2001).

 14

27 Note 13.

http://www.tuxedo.org/~esr/writings/cathedral-bazaar/cathedral-bazaar/index.html
http://www.cnn.com/TECH/computing/9811/06/linux.threat.idg/

I began to appreciate the difference between acting on the principle of command and
discipline and acting on the principle of common understanding. The former works
admirably in a military parade, but it is worth nothing where real life is concerned,
and the aim can be achieved only through the severe efforts of many converging
wills.28

Raymond claims community members are driven by “egoboo” – the enhancement
to self-esteem that results from successful participation in the group.29 The free
community can bring more rapid attention to a problem whereas the proprietary
closed-source responses are “frequently as late as they are disappointing”.30 “In the
world of cheap PCs and fast Internet links we find pretty consistently that the only
really limiting resource is skilled attention.”31 Critically, developers should have
access to the source code of a program thus enabling modification and distribution
with limited obligations to the licensor. It is source code that “links computers and
humans. To understand how a program runs; to be able to tinker with it and change
it; to extend a program or link it to another — to do any of these things with a
program requires some access to the source”.32

Free and open source development also has supporters in the commercial market
place. Equipment manufacturers are keen supporters of open source software that
will make their machines interoperable and broaden potential market share. They
might use free or open code in ROM chips which are executed when a computer
starts up and dictates the range of activities it can perform. Interoperability is
needed between these ROM chips and any software to be added later. For example,
a manufacturer of computers may wish to be operable with Sun’s Star Office
application and would use any open source or free code that could enhance such
operability. In order to have their machines used as Web servers they would wish
to be operable with all ranges of web software on the market. A hardware company
that could sell a machine with a free or open source operating system may be able
to increase its profit margins when it does not have to pay mandatory license fees
to a particular supplier. Recognising quality, in 1998 IBM stopped putting out its
own server product with its machines and adopted Apache, an open source server
product with over 80% market share.

28 Note 13.
29 Note 13.
30 Patrick K Bobko, “Open-Source Software and the Demise of Copyright” (2001) 27
Rutgers Computer & Tech. L.J. 51 at 79.
31 Note 13.

 15

32 Lawrence Lessig, The Future of Ideas: The Fate of the Commons in a Connected World
(2001) Random House, NY, p 50.

Governments, too, recognise the benefits of open source development.33 A recent
study by Mitre Corporation on behalf of the US Department of Defence was
cautiously optimistic concluding open source “encourages significant software
development and code re-use, can provide important economic benefits, and has
the potential for especially large direct and indirect cost savings for military
systems that require large deployments of costly software products”.34 Taiwan has
an open source project supported by the National Science Council and Ministry of
Education. It is examining use of open source products to save royalty payments
for office software in government agencies and schools.35 Due to the high regard
for privacy considerations in Europe, the German government is supporting an
open source project, GnuPG, to reduce reliance on proprietary privacy enhancing
code such as PGP.36 The Linux community has entered a cooperative project with
the Software Research Institute of the Chinese Academy of Sciences and
NewMargin Venture Capital, a venture arm of the Chinese government called
RedFlag. Initially, it developed a localised operating system for servers but now
incorporates developments for PC systems, PDAs, and China’s computerized
lottery system.37 The Peruvian parliament has a Bill before it to mandate use of
open source products in government offices. Peruvian Congressman, David
Villanueva Nuñez, circulated a letter to Microsoft on the Internet that sparked
much debate on the relative merits of free and open code as opposed to proprietary
development.38

The clash between nonproprietary and proprietary forms of development is a
political, social and economic struggle. “Software pervades modern society; it can
be found in almost every product. So naturally, if only a few people control
software, their power increases and restricts users’ freedom.”39 Development of
such ‘gift cultures’ can mitigate “worrisome concentrations of corporate power in

33 For an article overviewing international legal efforts to utilise open source code see: Paul
Festa, “Governments push open-source software”, CNET News.com, 29 August 2001,
[http://news.com.com/2100-1001-272299.html?legacy] 19 July 2002.
34 Carolyn A. Kenwood, “A Business Case Study of Open Source Software”, The MITRE
Corporation, July 2001,
[http://www.mitre.org/support/papers/tech_papers_01/kenwood_software/index.shtml]
19 July 2002. pxxv.
35 Tiffany Kary, “Taiwan opens door to open source”, ZDNet News, June 4, 2002
[http://zdnet.com.com/2100-1104-931885.html] 19 July 2002.
36 The GNU Privacy Guard, [http://www.gnupg.org/].
37 [http://www.redflag-linux.com/].
38 Thomas C Greene, “MS in Peruvian open-source nightmare”, 5 June 2002,
[http://www.theregister.co.uk/content/4/25157.html] 17 July 2002.

 16

39 Shawn W Potter, “Opening Up to Open Source”, (2000) 6 Rich J.L. & Tech 24,
<http://www.richmond.edu/jolt/v6i5/article3.html>, (18 August 2001); B Fitzgerald,
“Intellectual Property Rights in Digital Architecture (including Software): The Question of
Digital Diversity?” [2001] EIPR 121.

http://www.richmond.edu/jolt/v6i5/article3.html

the software industry [by disdaining] those who seek to financially profit from the
community’s shared body of knowledge”.40

This does not mean non-proprietary development groups are united. They differ
over how to best maintain the communal aspects of software development. Since
the stock market ‘tech wreck’, non-proprietary groups have accelerated their split
into two main camps — the free software and open source movements. Their
essential difference lies in their approaches to the commercialization of non-
proprietary code.

1.3 Free Software Foundation (FSF) and Copy Left

“Free software does not mean that the software is free, as in requiring no payment.
When I speak of free software, I’m referring to freedom, not price. So think of free
speech, not free beer.”41 Thus asserts Richard Stallman, the founder of the Free
Software Foundation. Software is not free because it has no price, it is free because
it contains values that enhance liberty for users and programmers. Stallman applies
four strict criteria to maintain free values in software:

1. The freedom to run the program, for any purpose (freedom 0).
2. The freedom to study how the program works, and adapt it to your needs

(freedom 1). Access to the source code is a precondition for this.
3. The freedom to redistribute copies so you can help your neighbour (freedom

2).
4. The freedom to improve the program, and release your improvements to the

public, so that the whole community benefits (freedom 3). Access to the
source code is a precondition for this.42

40 David Bollier, “The Power of Openness, Why Citizens, Education, Government and
Business Should Care about the Coming Revolution in OpenSource Code Software: A
Critique and A proposal for the H20 project”, paper for the Berkman Center for Internet and
Society”, Harvard University, 10 March 1999,
<http://eon.law.harvard.edu/opencode/h20/> (23 July 2001); B. Fitzgerald, “Software as
Discourse: The Power of Intellectual Property in Digital Architecture” (2000) 18 Cardozo
Journal of Arts and Entertainment Law Journal 337.
41 Stallman Richard M, “Free Software: Freedom and Cooperation”, Speech at New York
University, New York, 29 May 2001 <http://www.gnu.org/events/rms-nyu-2001-
transcript.txt> (27 August 2001). On the power of free software models to enhance digital
diversity consider: B Fitzgerald, “Intellectual Property Rights in Digital Architecture
(including Software): The Question of Digital Diversity?” [2001] EIPR 121; B. Fitzgerald,
“Software as Discourse: The Power of Intellectual Property in Digital Architecture” (2000)
18 Cardozo Journal of Arts and Entertainment Law Journal 337.
42 “The Free Software Definition”, Updated 27 October 2001,

 17
<http://www.fsf.org/philosophy/free-sw.html> (23 July 2002).

http://eon.law.harvard.edu/opencode/h20/
http://www.gnu.org/events/rms-nyu-2001-transcript.txt
http://www.gnu.org/events/rms-nyu-2001-transcript.txt
http://www.fsf.org/philosophy/free-sw.html

1.3.1 GNU/Linux

Stallman realised the advantage of accessing source code when he tried to change a
program given to him by Xerox so it would run on printers in his MIT lab. Xerox
did not make the source code available and instructed an employee not to give
Stallman copies of the software. Comparing the sharing of programs to the sharing
of recipes (and the improvement of programs and recipes by changing the source),
he strongly criticizes proprietary control of software:

So imagine what it would be like if recipes were packaged inside black boxes. You
couldn’t see what ingredients they're using, let alone change them, and imagine if you
made a copy for a friend, they would call you a pirate and try to put you in prison for
years. That world would create tremendous outrage from all the people who are used
to sharing recipes. But that is exactly what the world of proprietary software is like. A
world in which common decency towards other people is prohibited or prevented.43

Free software developers often contribute to a program by accident and share
source code on some “intellectual commons”,44 usually the Internet.45 One module
can be used to integrate with a need of another developer. Thus software progresses
incrementally.

When broken up due to anti-trust findings against it in 1984, AT&T tried to license
use of its previously free Unix code. In reaction to this, Stallman launched a project
called GNU – a recursive acronym meaning “GNU’s not Unix”. The aim was to
create tools to build an operating system and then to produce such a system called
GNU OS. By the end of the 1980s tools such as a compiler had been developed but
the project slackened as the kernel for GNU OS was being formed. In 1991,
Stallman found by accident the Linux module developed by Linus Torvalds in
Finland to add to his GNU program after his attention was drawn to it by other free
developers who had seen parts on the Internet.46 Torvalds joined with Stallman and
the GNU/Linux operating system emerged. This system was distributed with its
source code.

In ’91 only Macintosh had advanced beyond a command-driven interface for
operating systems. Such a system of complicated commands had to be mastered
chilling the proliferation of computers to novice and irregular users. How many
wanted to remember a command like ‘copy *.* A:’ in order to copy all files to a

43 Note 32.
44 For the enhanced power code writers have in the cyberspatial intellectual commons see:
Lawrence Lessig, “Symposium: Key Address: Commons and Code” (1999) 9 Fordham I.
P., Media & Ent. L. J 405 at 410.
45 For example, Apache is a widely used open source, web server program:
<http://httpd.apache.org/dist/> (23 November 2001).

 18

46 Note 32. The history of this connection is best covered in the book by Sam Williams
mentioned in Note 38.

http://httpd.apache.org/dist/

floppy disk from a hard drive? During ’91 Microsoft developed a serious graphical
user interface (GUI) for an operating system not reliant on a DOS command driven
system. The methods used by Microsoft to develop and ensure consumer loyalty to
this system they developed and propertized is the subject of an extensive series of
ongoing anti-trust cases. The GNU/Linux system has also met this challenge by
adopting contributions of groups such as Samba to produce GUI interfaces for file
and print servers.47

The result is that Linux now represents an operating system with significant profile
in the community, so much so that it is said to threaten the dominance of MS
Windows. A recent statistical study shows some comparative findings:

• Reliability: In a ten-month test for reliability run by ZDNet, NT servers crashed an
average of once every six weeks, the GNU/Linux servers never went down,

• Security: Insurance companies covering “hacking” incidents have begun charging
clients 5 to 15 percent more where Microsoft’s Windows NT software is employed
instead of Unix or GNU/Linux, in Internet operations.48

1.3.2 General Public License (GPL)

A licensing system that promoted sharing and innovation was critical in the
development of GNU/Linux. The free software movement is concerned with
colonization by commercial (non-free) groups incorporating free code into their
developments. Any copyright taken out over the resultant program effectively
privatizes the free code used. Furthermore, non-free developers have freeloaded by
not contributing anything back to the free community. To counter this, Stallman
introduced the GNU General Public License (GPL). The GPL covers the initial
program and “any derivative work under copyright law: that is to say, a work
containing the Program or a portion of it, either verbatim or with modifications
and/or translated into another language”.49

Stallman places the GPL in a direct commercial and political context called
‘Copyleft’:

To copyleft a program, we first state that it is copyrighted; then we add
distribution terms, which are a legal instrument that gives everyone the rights to
use, modify, and redistribute the program’s code or any program derived from it

47 For a detailed overview of the history of GNU/Linux see: G. Moody, Rebel Code: Linux
and the Open Source Revolution, (2001) Penguin Books, NY, USA. See also: Lawrence
Lessig, The Future of Ideas: The Fate of the Commons in a Connected World (2001)
Random House, NY, p50ff; Sam Williams, Free as in Freedom: Richard Stallman’s
Crusade for Free Software (2002) O‘Reilly, San Francisco, Chapter 11.
48 David A. Wheeler, “Why Open Source Software / Free Software (OSS/FS)? Look at the
Numbers!” [http://www.dwheeler.com/oss_fs_why.html] 23 April 2002.

 19

49 “The General Public License (GPL)”, Version 2, June 1991,
<http://www.opensource.org/licenses/gpl-license.html>, 19 August 2001.

http://www.dwheeler.com/oss_fs_why.html
http://www.opensource.org/licenses/gpl-license.html

but only if the distribution terms are unchanged. Thus, the code and the freedoms
become legally inseparable.50

It is a powerful license. By mixing GPL’d code with new code in a derivative work
the obligation arises to make all the source code known or “free”. Consequently, a
commercial developer who takes free code under a GPL license into the code of
their product is obliged to make the source code of the entire product available.
Stallman argues this ensures ‘freedom three’ is maintained and the whole
community benefits. The GPL “actually has the strength to say no to people who
would be parasites on our community”.51

1.4 The Open Source Movement

The open source movement is a non-profit organization. Its leading proponent, Eric
Raymond, has conceptualized business models enabling commercial exploitation
of open source programs.52 Programs distributed with the Open Source Certified
trademark (OSI Certified)53 are published on an approved list of licenses54 that
conform to the open source definition.55 The main elements of such licenses are:

• Free redistribution so that a party may not charge a fee or royalty for the program
unless it is a component of an aggregate software distribution containing programs
from several different sources.

• The license shall not require a royalty or other fee for such sale,
• The program must include source code, and must allow distribution in source code

as well as compiled form. If a program is not distributed with source code (eg
Apache license) there must be a well-publicized means of obtaining the source
code for no more than a reasonable reproduction cost preferably, downloading via
the Internet without charge,

• Derived works and modifications must be allowed and be capable of distribution
under the same terms as the original license,

• The license must maintain the integrity of the authors code by guaranteeing that
source be readily available, but may require that it be distributed as pristine base
sources plus patches. In this way, “unofficial” changes can be made available but
readily distinguished from the base source,

50 “What is Copyleft?”, Updated 5 November 2001,
<http://www.gnu.org/copyleft/copyleft.html> 24 November 2001.
51 Richard M Stallman, Note 32.
52 These include loss leader; widget frosting; give away recipe/open restaurant;
accessorizing; free the future, sell the present; free the software, sell the brand; free the
software, sell the content. Potter Shane W, “Opening UP to Open Source” (2000) 6 Rich.
J.L &Tech 24
53 Open Source.Org, Revised 30 April 2001,
<http://www.opensource.org/docs/certification_mark.html> (24 November 2001).
54 Open Source.Org, <http://www.opensource.org/licenses/index.html>, (24 November
2001).

 20

55 Open Source.Org, Version 1.9, <http://www.opensource.org/docs/definition.html>, (20
July 2002).

http://www.gnu.org/copyleft/copyleft.html
http://www.opensource.org/docs/certification_mark.html

• The license must not discriminate against any person, group of persons or fields of
endeavour,

• The license must not discriminate against fields of endeavour,
• The rights attached to the program must not require entry to some other form of

license or agreement such as a non-disclosure agreement,
• The rights attached to the program must not depend on the program’s being part of

a particular software distribution,
• The license must not place restrictions on other software that is distributed along

with the licensed software. For example, the license must not insist that all other
programs distributed on the same medium must be open-source software.56

1.5 Tension between Open Source and Free Software

It could appear that the difference between open source and free software is
minimal but the move to embrace the commercial market by open source
developers has led the free software movement to clearly differentiate themselves.
The distinction is over the implications of the GPL. Copyleft software maintains
freedom for all developers (and consequently users). It requires a licensee to give
back under the terms of the GPL the source code of any changes or modifications.
Open source software will allow non-free versions to be made. For example, the
Apache license allows a work to be distributed with or without modifications in
source or binary form. The licensee can make changes without a requirement to
share them provided the name of the derivative work is changed. The Berkeley
Software Distribution (BSD) License contains no obligation to disclose source
code of modifications when distributing a derivative work.57

Open source developers can use free software to add to proprietary software so a
system can become a combination. While acknowledging that the real enemy is
proprietary software companies, FSF are wary of open source groups who mix free
and non-copylefted software. “In effect, these companies seek to gain the
favourable cachet of ‘open source’ for their proprietary software products – even
though those are not ‘open source software’ – because they have some relationship
to free software or because the same company also maintains some free
software”.58

The tension is exacerbated by what many call the ‘viral’ nature of free GPL-
licensed (GPL’d) code.

56 Ibid.
57 For more on the differences between GPL free software and open source see: Joe Barr,
“Live and let license” ITworld.com, 23 May 2001,
[http://www.itworld.com/AppDev/350/LWD010523vcontrol4/]; Larry Rosen, “Which open
source license should I use for my software?” [http://www.rosenlaw.com/html/GL5.pdf].
58 Gnu.Org, “Why ‘Free Software is better than ‘Open Source’”,

 21
 <http://www.gnu.org/philosophy/free-software-for-freedom.html>, (13 November 2001).

http://www.gnu.org/philosophy/free-software-for-freedom.html

2. TABLE 1 - BASIC CLAUSES OF SOME FREE AND OPEN SOURCE LICENSES

2.1 The GNU General Public License (GPL)59
Definition of source code (Clause 3) – “the preferred form of the work for making
modifications to it”. Includes for all modules, interface definitions files, scripts for
compilation and installation of the executable.

Program or “work based on the Program” = the Program or any derivative work under
copyright law “a work containing the Program or a portion of it, either verbatim or with
modifications and / or translated into another language”. (Clause 0)

Aggregation of other works not based on the Program (eg stored together or shared on a
server) does not bring other work under this license.
Clause Permits Obliges
1 Copy and distribution of verbatim

copies

Charging fees for:
• Act of transferring copies
• Offer warranty protection in
exchange for a fee

“Conspicuously and appropriately
publish” on each copy a copyright notice
Disclaimer of warranty
Pass on a copy of this license with the
copy
Keep intact any current notices in
program

2 Make modifications “thus
forming a work based on the
program”
Copy and distribute modifications

Place prominent notices in modified files
of your changes and date thereof
Allow any work “that in whole or in part
contains or is derived from the Program
any part thereof” to be licensed “as a
whole” for no charge to all third parities
under the terms of this License.

3 Copy and distribute work as
object code or in executable form

Accompany this with complete machine-
readable source code under license
requirements of Clause 1 and 2
OR
accompany it with written offer for up to
3 years to give any third party at a fee for
no more than costs the source code under
license requirements of Clause 1 and 2

5 Modification or distribution of the
Program constitutes acceptance of the
license terms

7 Legal obligation under other intellectual
property rights prevent you from
distributing the Program

11 No expressed or implied
warranty, not even with regard to
merchantability or fitness for
purpose

 22

59 www.opensource.org/licenses/gpl-license.html.

Entire risk and cost for defects is
borne by licensee

12 Licensor is immune from
damages arising from Program
unless stipulated in writing

2.2 GNU Lesser Public License60

Notes: this license is for software libraries. A software library is a “collection of software
functions and / or data prepared so as to be conveniently linked with application programs
(which use some of those functions and data) to form executables. Yet when a program is
linked with a library the result is [maybe]61 a derivative work. Under GPL this would
mean the entire work would have to be made free. Compatibility of the library with other
software that may be proprietarial is paramount. To avoid that whole work coming under
GPL requirements the aim of this license is to “permit linking those libraries into non-free
programs”.

For example, proprietarial developers may wish to use a ‘free’ library that has become a
de-facto standard such as many of the Linux standards. This license would allow this
software standard to be incorporated into a non-free product.

Terms
Work based on the library = code derived from the library
Work that uses the library = code must be combined with the library in order to run
1 Copy and distribution of

verbatim copies of the library’s
complete source code

“Conspicuously and appropriately publish”
on each copy a copyright notice
Disclaimer of warranty
Pass on a copy of this license with the
copy

60 www.opensource.org/licenses/lgpl-license.html.

 23

61 During dissemination for comment of an earlier draft of this article, an e-mail debate took
place over the viral nature of the GPL. A concern was raised that linking a core program to
a library would make the core program a derivative of that library. It would appear,
however, that without any modification of the library, mere linking would only create a
‘redistribution’ of that library, rather than a ‘derivative’ work. There is still some debate
about this issue – Richard Stallman, of the Free Software Foundation, believes that “using
the ordinary GPL for a library makes it available only for free programs” (Richard
Stallman, Why you shouldn’t use the Library GPL for your next library (1999) GNU
Project <http://www.gnu.org/licenses/why-not-lgpl.html> at 22 September 2003).
However, it is suggested that the more persuasive view is that a program will be a
derivative of another if “the source code of the original program was used, modified,
translated or otherwise changed in any way to create the new program”, but not by “linking
to library programs that were designed and intended to be used as library programs” or by
utilising “plugins and device drivers that are designed to be linked from off-the-shelf,
unmodified, programs” (Larry Rosen, Geek Law: Derivative Works (2003) Linux Journal
<http://www.linuxjournal.com/article.php?sid=6366> at 22 September 2003). The
distinction is important because redistribution of a library licensed under the GPL, rather
than distribution of a derivative of that library, will not impose the restriction that the core
program also be released under the GPL.

Keep intact any current notices in program
2 Modify the library or any

portion of it
Copy and distribute
modifications

Modified works must themselves be a
software library and copied and/or
distributed with notifications for free to
third parties

3 Can apply terms of the GNU
GPL to a derivative work not
part of a library that uses a
portion of code from the library

4 Distribution of copies of the
library or portions or derivative
works must be accompanied by
Source code

5 Work that Uses the Library
Program that contains none of
the library but is designed to
work with it is outside scope of
license as are those that have
only minimalist links to the
library such as numerical
parameters, data structure
layouts, inline functions of ten
lines or less.

Linking a work that uses the library with
the library creates an executable that is a
derivative of the library. This executable is
covered by the License

2.3 BSD62 and MIT License
 BSD

Redistribute and use program in
source or binary form with or
without modification

MIT
No limits on rights to use, copy,
modify, merge, publish, distribute,
sublicense, and / or sell copies of
the software

Redistribution of source code and
binary form to contain copyright
notices and disclaimer as to warranty
only, license silent on making source
code for derivative works available

Need to publish disclaimer as to
warranty

2.4 The Artistic License63
Package = collection of files distributed by copyright holder, and derivatives of that
collection of files

Standard Version = a program package that has not been modified or has been modified in
accordance with wishes of the copyright holder

1 Copy and distribute verbatim copies of

the Standard Version of the Package

62 www.opensource.org/licenses/bsd-license.html.

 24

63 http://www.opensource.org/licenses/artistic-license.php.

2 Can apply fixes and other
modifications derived from public
domain or from the copyright holder of
the Package. Package so modified
becomes the standard version

3 /4 Can further modify / distribute package Notices in each changed file and
must do ONE of the following:
1. Place modifications in a
public domain
2. Use modified package
only in own organization
3. Make other distribution
arrangements with copyright holder
4. Rename executables not in
standard version and provide
documentation of how they differ to
standard

5 Charge fees you choose for support of
package but not the Package itself
Can distribute Package in aggregate
with other (possibly commercial)
packages

May not advertise the package as a
product of your own

2.5 Sun Industry Standards Source License (SISSL)64

Initial developer = individual or entity identified as initial developer in source code notice
Larger work = a work which combines original code or portions thereof with code not
covered by terms of this license
Original code = source code of software
Contributor version = combination of original code and modifications made by that
contributor
2.1(a) –
(d)

Initial Developer Grant

World wide, royalty free, non
exclusive license subject to third party
intellectual property claims to use,
reproduce, modify, display, perform,
sublicense and distribute original code
with or without modifications and / or
as part of a larger work

A patent claim to sell and offer for sale
the original code.

No patent license for code portions
taken from original code or
modifications to it.

3.1 Distribution of licensee’s modified
code must comply with all
requirements of the Sun standards

 25

64 www.opensource.org/licenses/sisslpl.html.

body. If they do not meet
requirements must publish
deviations from standards and offer
in source code form under this
license

3.2 Can charge fee for warranty support
indemnity liability obligations for
modified works but not Initial
Developer

3.3 Distribute any executable and source
versions of modifications under license
of own choice

Terms which differ from this
license are not offered by Initial
Developer and indemnify initial
developer from any liability

3.4 Can combine original code with other
code to create a larger work and
distribute as a single product

2.6 Mozilla Public License Version 1.065

Contributor = each entity that creates or contributes to the creation of Modifications
Contributor version = original code, prior modifications and modifications of particular
contributor
2.1 (a) Initial Developer grants world-

wide, royalty-free, non-exclusive
license (subject to third party
intellectual property claims) to use,
reproduce, modify, display, perform,
sublicense and distribute

(b) Utilize patents of original developer
to the extent necessary to use original
code

2.2 Each contributor to give rights under
2.1 (a)-(b) above

3.2 Source code versions of
modifications must be made
available on same media as
executable version of program or
via an accepted electronic
distribution mechanism (if by EDM
must be available for 12 months
after date it initially became
available or at least 6 months after a
subsequent version became
available)

 26

65 www.opensource.org/licenses/mozilla1.0.html.

2.7 Apache License

Redistribute source code and binary forms with or without modification
1-2 Redistributions in

source or binary form
must include copyright
notice, disclaimers and
list of conditions in
license

3. End-user documentation included with the
redistribution, if any, must include
acknowledgment of Apache

4-5 May not use Apache name in derivative works or to
endorse any derivative works

2.8 Open Software License66

“Source Code” = the preferred form of the Original Work for making modifications to it
and all available documentation describing how to modify the Original Work
1 Licensor grants a

world-wide, royalty-
free, non-exclusive,
perpetual,
sublicenseable license
to reproduce,
distribute, perform,
display and create and
distribute derivative
works

Copies of original work or derivative works
distributed must be licensed under the Open
Software License

2 Licensor grants a
license to make, use,
sell and offer for sale
the original work and
derivative works under
any patent claims
owned or controlled by
the licensor and
embodied in the
original work

3 Machine readable source code and documentation
must be provided for everything released. Source
may be published in an inexpensive and convenient
information repository

4 The names and trademarks of the licensor or any
contributors may not be used to endorse derivative
works without consent.

 27

66 www.opensource.org/licenses/osl-2.0.php.

No rights to trademarks, copyrights, trade secrets,
patents or other intellectual property except as
explicitly stated.

6 All copyright, trademark, patent and attribution
notices in the original work must be retained in any
derivatives.

Source of derivative must contain a prominent
attribution notice.

7-8 Warranty that copyright and patent rights licensed
are granted by the licensor or are properly
sublicensed with the permission of the
contributor(s).

Disclaimer of warranty and limitation of liability.

10 License is revoked immediately upon starting an
action, including a cross-claim or counterclaim, for
patent infringement, either

(i) against the licensor for any software
patent; or

(ii) against any entity with respect to a
patent applicable to the original work.

2.9 Academic Free License67

“Source Code” = the preferred form of the Original Work for making modifications to it
and all available documentation describing how to modify the Original Work
1 Licensor grants a

world-wide, royalty-
free, non-exclusive,
perpetual,
sublicenseable license
to reproduce,
distribute, perform,
display and create and
distribute derivative
works

2 Licensor grants a
license to make, use,
sell and offer for sale
the original work and
derivative works under
any patent claims
owned or controlled by
the licensor and
embodied in the
original work

 28

67 www.opensource.org/licenses/afl-2.0.php.

3 Machine readable source code and documentation
must be provided when the original work is
distributed. No obligation is placed upon derivative
works.

4 The names and trademarks of the licensor or any
contributors may not be used to endorse derivative
works without consent.

No rights to trademarks, copyrights, trade secrets,
patents or other intellectual property except as
explicitly stated.

6 All copyright, trademark, patent and attribution
notices in the original work must be retained in any
derivatives.

Source of derivative must contain a prominent
attribution notice.

7-8 Warranty that copyright and patent rights licensed
are granted by the licensor or are properly
sublicensed with the permission of the
contributor(s).

Disclaimer of warranty and limitation of liability.

10 License is revoked immediately upon starting an
action, including a cross-claim or counterclaim, for
patent infringement, either

(iii) against the licensor for any software
patent; or

(iv) against any entity with respect to a
patent applicable to the original work.

3. SOME LEGAL ISSUES IN FREE AND OPEN SOURCE LICENSED SOFTWARE

3.1 The “Viral” Nature of Free Software

The GPL aims to “control the distribution of derivative or collective works”.
Clause 2 states that you can form a new work based on the original program
provided that such a derivative work is itself licensed to all third parties at no
charge under the terms of the GPL. Source code must be supplied. It is not aimed at
claiming rights over entirely new works. The GPL refers to a derivative work as
defined in copyright law.68 In US copyright law69 a derivative work must be based

 29

68 GPL, Note 40, Clause 0. Nonetheless there still appears to be some uncertainty as to what
this means and as to whether this is the only type of derivative work contemplated by the
GPL. Is any work that employs GPL’d code regardless of whether it would be a derivative
work under US copyright law – a derivative work in the eyes of the GPL?

on one or more pre-existing works, and must recast, transform or adapt an original
work.70 To be a derivative work the licensee must change the code in the original
GPL’d work (pre-existing work). The copyright owner of the pre-existing work has
the right to authorise preparation of derivative works.71 Copyright subsists for the
author of the derivative work72 but only to the extent of the material added to the
pre-existing work.73 In addition, copyright for the derivative work “does not extend
to any part of the work in which such material has been used unlawfully”.74

Here lies an interesting issue. The copyright statute gives the author of the
derivative work the right to control copyright in the added (non pre-existing) parts
of a derivative work.75 The GPL insists they must reveal such changes. In this
sense the GPL appears to override the rights given under the copyright statute to
control the added (non pre-existing) parts of the derivative work. However, for the
author of a derivative work to claim copyright under US law they will need to
show they have not used the pre-existing work unlawfully.76 Therefore an author of
a derivative program will need to rely on the permission to use code granted in the
GPL (which also contains an obligation to disclose source code) in order to assert
copyright in the derivative work, thereby relinquishing complete control over the
added (non pre-existing) parts of the derivative work. Although, in an instance
where the use of GPL’d code is a lawful act of fair use under s 107 of the US

69 Australian copyright legislation does not use the term “derivative works”. A copyright
holder has the exclusive right to make adaptations of a work under ss31 (1) (a) (vi) of the
Australian Copyright Act 1968. For software purposes, an adaptation is a “version of the
work (whether or not in the language, code or notation in which the work was originally
expressed) not being a reproduction of the work”: s 10 Copyright Act 1968. See also B
Sookman, Computer, Internet and Electronic Commerce Law (1991) Carswell Canada 3-
210; Vault Corp v Quaid Software Ltd 847 F.2d. 255 (5th Cir. 1988). Under s 31 (1) (a) (i)
Copyright Act 1968 it is unlawful to reproduce the whole or a substantial part of a work
without permission of the copyright owner: s 14 (1) Copyright Act 1968; Data Access
Corporation v Powerflex Services Pty Ltd [1999] HCA 49.
70 Copyright Act, (USA) 17 USC § 101.
71 Note 61, § 106(2).
72 Note 61, § 103(a).
73 Note 61, § 103(b).
74 Note 61, § 103(a). Contrast the Australian position: A-One Accessory Imports Pty Ltd v
Off Roads Imports Pty Ltd (No 2) (1996) 34 IPR 332; S. Ricketson, The Law of Intellectual
Property 2nd ed. Volume 1 (1999) Law Book Co., Sydney, 116-120.
75 Note 61, § 103(a).

 30

76 Ibid. A further issue is the extent to which the unlawful user prevents copyright arising in
any part of the later work: M. Nimmer and D. Nimmer, Nimmer on Copyright Lexis Nexis,
Chapter 3. Cf. the Australian law: A-One Accessory Imports Pty Ltd v Off Roads Imports
Pty Ltd (No 2) (1996) 34 IPR 332, which suggests copyright can be claimed and protected
in an adaptation unlawfully embodying a pre-existing work. This may impact on the legal
significance of the GPL under Australian law.

Copyright Act the need to gain permission pursuant to the GPL is removed.77 Does
this mean there is no obligation to disclose source code in this instance?

It is these types of uncertainties that have led non-free developers to fear their
source code might need to be revealed by any contact with GPL licensed software.
Compounding these concerns, the GPL is silent on length of license term.78

With one exception to be covered later in this paper, the GPL has not been tested in
court. In order to avoid copyright infringement and the need to rely on the GPL, the
down-the-line developer who wishes to distribute software will need to show that
their code is an independent work and that it does not infringe the copyright
owner’s exclusive right to reproduce or prepare a derivative work. What does
current law say is an infringement of the exclusive right of the copyright owner to
prepare a derivative work under s106 US Copyright Act? There is not a plethora of
cases testing this issue with regard to software. For an infringement, there must be
substantial similarity in the “total concept and feel” of a derivative work in
comparison to the underlying work. “The little available authority suggests that a
work is not derivative unless it has been substantially copied from the prior
work.”79 Yet, in another case, digital images that were “touched up or modified
selections” of original works were not found to make the later work an infringing
derivative.80 Most importantly for free and open source developers, infringement
was not found in a later work that was an improvement of a Nintendo computer
game.81 The later work allowed a user to add lives to a game character, increase the
speed of its movements and empowered it to float over obstacles. However, in
another case, a company that downloaded game levels created by users utilising the
‘build’ utility provided in the game and burnt these to a CD for commercial gain
was found to have created an infringing derivative work.82

77 See further: S. McJohn, “The Paradoxes of Free Software” (2000) 9 Geo. Mason L. Rev.
25.
78 See further Uniform Computer Information Transaction Act (UCITA) s308(1) & (2).
Updated August 10 2001, <http://www.ucitaonline.com/ucita.html> (23 November 2001).
UCITA is a model law promulgated for adoption by the US states which creates a ‘sale of
goods' styled regime for the licensing of software and other informational transactions. It is
argued that the process of transacting software and other informational products is not
adequately covered by existing sale of goods type legislation, which finds it hard to classify
software. In the case law software is sometimes classified as a good and sometimes as a
service; leading commentators to label software the digital chameleon. UCITA aims to
avoid this debate by creating a sui generis regime governing the formation, performance
and termination of information transactions. It has been highly controversial in its content
and has only been adopted by two US states: Maryland and Virginia,
http://www.nccusl.org/uniformacts-subjectmatter.htm.
79 Litchfield v Spielberg 736 F. 2d. 1352 at 1357 (9th Cir. 1984).
80 Tiffany Design Inc v Reno-Tahoe Specialty Inc 55 F. Supp 2d. 1113 at 1121 (Dist.
Nevada 1999).
81 Lewis Galoob Toys Inc v Nintendo of Am. Inc 964 F. 2d 965 (9th Cir. 1992).

 31

82 Micro Star v FormGen 154 F. 3d. 1107 (9th Cir. 1998).

http://www.ucitaonline.com/ucita.html

One commentator suggests three factors to consider when establishing whether a
later work infringes. First, does the later work “substantially incorporate” or is it
“substantially similar” to the pre-existing work? Second, has the copyright holder
of the pre-existing work been compensated for such use. Third, what rights did the
creator of the later work have to “display or to copy” the underlying work.83 It is
further argued that the copyright owner of the pre-existing work must prove the
derivative use “was not customary or reasonably expected” thus denying them
opportunity to be compensated for their work.84 All free and open source
developers know it is customary and reasonably expected for other developers to
build on their efforts and, often, the only form of compensation in the GPL is the
publication of source code for any derivative changes. The harm in misuse of GPL
products often lies in lack of specific performance in publishing source code of the
derivative changes.

As indicated above, the GPL does not apply to programs “reasonably considered
independent and separate works in themselves”85 which can be distributed within a
modified work but not come under GPL obligations. Chief legal representative of
the open source licensing certification process, Larry Rosen, argues concerns about
GPL’s ‘viral’ nature are exaggerated. “A derivative work is not created by merely
touching, any more that one catches AIDS by merely hugging. A more intimate
relationship is required.”86 Rosen indicates clear examples where infringement of
the GPL work’s copyright would not occur. First, a proprietary program that runs a
GPL work such as in the GNU/Linux operating system does not alter the GPL
licensed work. Secondly, programs that are dynamically linked such as a printer
driver for a Linux operating system do not interfere with each other’s source code.
Thirdly, programs that interact with common data but use an application program
interface (API) do not alter the source code of each program. For an infringement
of the GPL to occur an author must “consciously recast, transform, or adapt the
GPL-licensed software” and then distribute this work under some license other
than the GPL. Rosen also objects to the term ‘viral’. He sees the GPL license as a
bargain between a developer who makes their work ‘free’ in return for others
making their enhancements free. “A derivative work inherits the benefits of the
GPL”, Rosen claims. He prefers to see the power of the GPL as resulting in
“inheritance” of benefits rather than diseased infection.

83 L Loren “The Changing Nature of Derivative Works in the Face of New Technologies”
(2000) 4 J. Small & Emerging Bus. L., 57 at 84.
84 Amy Cohen “When Does a Work Infringe the Derivative Works Right of a Copyright
Owner?” (1999) 17 Cardozo Arts & Ent L. J 623 at 657.
85 GPL, Note 40, Clause 2.
86 Rosen Larry, “The Unreasonable Fear of Infection”, RosenLaw.com,

 32
[http://www.rosenlaw.com/html/GPL.PDF] (23 September 2001).

http://www.rosenlaw.com/html/GPL.PDF

3.2 Entering the License Contract

At what point is one contractually bound by taking an open source license?

Acceptance of a license is a contractual agreement. To date, case law indicates a
licensee accepts the conditions of a software license by opening the shrink-wrap of
a program even if the license is not on the box, but inside it.87 For programs
distributed digitally by some electronic distribution mechanism, the licensee must
act in a way that plainly manifests assent in a clickwrap agreement. Mere
downloading is not sufficient. Assenting action must be unambiguous. “The
primary purpose of downloading is to obtain a product, not to assent to an
agreement. In contrast, clicking on an icon stating ‘I assent’ has no meaning or
purpose other than to indicate such assent.”88

The GPL however indicates a different form of acceptance. Assent occurs “by
modifying or distributing the Program (or any work based on the Program)”.89

3.3 International Issues

As the free software distribution model grows throughout the world legal notions
such as “jurisdiction” and “choice of law” will highlight the legal nature of the
GPL and its international enforceability. Some of these issues may turn on whether
we see the GPL as a license or a contract? To date in this article, these words have
been used almost interchangeably. The distinction is important. Contract law is
subject to the vagaries of various national approaches. For instance, some legal
systems require a contract to be in local language for enforceability. A copyright
license enables products to come under intellectual property laws that have been
harmonised by international treaties such as the Berne Convention for the

87 The decision of ProCD, Inc v Zeidenberg 86 F.3d 1447 (7th Cir. 1996) held that shrink-
wrap, and arguably click-wrap, licences are enforceable in the USA in certain
circumstances: Hotmail Corporation v Van Money Pie Inc 47 U.S.P.Q. 2d. 1020 (N.D. Cal.
1998); Register.com v Verio Inc. 126 F. Supp. 2d 238 (S.D.N.Y. 2001); Lemley, Menell,
Merges and Samuelson Software and Internet Law (2000) 494-5. See also Hill v Gateway
2000 Inc 105 F. 3d 1147 (7th Cir. 1997) NBA v. Motorola, Inc. 105 F.3d 841 41 U.S.P.Q.2d
(BNA) 1585 (2d Cir. N.Y. 1997); cf. Wrench LLC v. Taco Bell Corp.51 F. Supp. 2d 840
(W.D. Mich. 1999), Klocek v. Gateway, Inc. 104 F. Supp. 2d 1332 (D. Kan. 2000). Lemley
et al suggest that the weight of this decision should not be overstated as it goes against the
majority of judicial opinion on the issue: Lemley, Menell, Merges and Samuelson Software
and Internet Law (2000) pp 490-3; see also B Sookman, Computer, Internet and Electronic
Commerce Law (1991) Carswell Canada 2-71 ff. Nevertheless the rationale of ProCD has
been codified in ss 208-9 Uniform Computer Information Transactions Act (UCITA).
88 Specht v. Netscape Communs. Corp 2001 US Dist. LEXIS 9073 at [26] per Hellerstein
USDJ; 150 F.Supp 2d 585 (S.D.N.Y. 2001) affirmed on appeal, 2002 US App. LEXIS
20714 (2nd Cir. 2002).

 33

89 GPL, Note 40, Clause 5.

Protection of Literary and Artistic Works, WIPO Copyright Treaty (1996) and
TRIPS. Along with the principle of national treatment this means that copyright
law is (arguably) more widespread and uniform than contract.

Chief counsel for the Free Software Foundation, Eben Moglen, suggests the GPL is
a copyright license not a contract. 90 “Licenses are not contracts: the work’s user is
obliged to remain within the bounds of the license not because she voluntarily
promised, but because she doesn’t have any right to act at all except as the license
permits.”91 In the only case to consider enforcement of the GPL requirement to
publish source code, he made the following claim:

The GPL is a very simple form of copyright license, as compared to other current
standards in the software industry, because it involves no contractual obligations.
Most software licenses begin with the exclusive rights conveyed to authors under
copyright law, and then allow others access to the copyrighted work only under
additional contractual conditions. The GPL, on the other hand, actually subtracts from
the author’s usual exclusive rights under copyright law, through the granting of
unilateral permissions. When a work of copyrighted software is released under the
GPL, all persons everywhere observing its terms are unilaterally permitted all rights to
use, copy, and modify the software. Because these permissions are unilaterally given,
users who wish only to use the software themselves, making copies for their own use,
or who wish only to make derivative works for their own use, do not have to “accept”
the license, because they have no reciprocal obligations under it.92

An analogy can be made with land to demonstrate Moglen’s view. I can give you a
license to walk on my land. This requires no counter obligation from you. It
remains a unilateral permission not a contract. But such a view ignores the
obligation to publish source code on a developer wishing to distribute a derivative
work based on a GPL product. This obligation makes the license more like a
contract.93

90 It could be argued that if the GPL is a mere licence it can be revoked at will leaving
developers on a free software platform at the mercy of the licensor: J Malcolm, “Problems
in Open Source Licensing” (2003) <http://www.ilaw.com.au/public/licencearticle.html>
91 Eben Moglen, “Free Software Matters: Enforcing the GPL, I”, 12 August 2001,
[http://emoglen.law.columbia.edu/publications/lu-12.html] 25 January 2002. See also: B
Fitzgerald, “Digital Property: The Ultimate Boundary?” (2001) 7 Roger Williams
University Law Review 237; B Fitzgerald, “Commodifying and Transacting Informational
Products Through Contractual Licences: The Challenge for Informational
Constitutionalism” in CEF Rickett and GW Austin (eds), Intellectual Property and the
Common Law World, Oxford, Hart Pub, 2000, 35.
92 Progress Software Corp. v. MySQL AB 2002 U.S. Dist. LEXIS 5757. The “Declaration
of Eben Moglen in support of defendant’s motion for a preliminary injunction on its
counterclaims” made on February 22 2002 is found at: [http://www.fsf.org/press/mysql-
affidavit.html] 8 May 2002.
93 cf. J Malcolm, “Problems in Open Source Licensing” (2003).

 34
 http://www.ilaw.com.au/public/licencearticle.html.

http://www.ilaw.com.au/public/licencearticle.html

In Progress Software Corp v MySQL AB, Progress were accused of intentionally
distributing a program called Gemini, allegedly a derivative work of the GPL
program MySQL, without source code. The case was an application for a
preliminary injunction to prevent Progress and its subsidiaries from sublicensing or
distributing the program. The finding of the court was an inconclusive outcome for
this test of GPL enforceability. “With respect to the General Public License
(‘GPL’), MySQL has not demonstrated a substantial likelihood of success on the
merits or irreparable harm.”94 In addition, Progress did comply with its source code
publication requirements under the GPL during the course of the dispute and this
did much to cure the breach according to the judge.

The license or contract categorisation issue is one point of consideration that needs
to be resolved before it is known whether the GPL will be subject to the vagaries of
local contract law or remains internationally effective as a copyright license. It will
be interesting to see how courts respond to this issue. In Sun Microsystems Inc v
Microsoft Corp the Court explained that:

Generally a copyright owner who grants a nonexclusive license to use his copyrighted
material waives his right to sue the licensee for copyright infringement and can sue
only for breach of contract: Graham v James 144 F. 3d 229, 236 (2d. Cir. 1998). If
however, a license is limited in scope and the licensee acts outside the scope, the
licensor can bring an action for copyright infringement: S.O.S. Inc v Payday Inc 886
F. 2d. 1081, 1087 (9th Cir. 1989); Nimmer on Copyright s 1015 [A] (1999).95

4. CONCLUSIONS

Another commentator argues that the differentiation between license as an
intellectual property right and contract is not one that creates conflict. Rather they
are “two areas of law that have long co-existed and that, at least with respect to
one, depend on the other for support in the direction of the goals that are
purportedly at the heart of the core legal regime. Copyright and other forms of
intellectual property law cannot, and have never been able to, foster active
development and distribution of information products in society without relying
extensively on contracts”.96 The free and open source licenses use this nexus
between copyright and contract to create a new paradigm for creation and
distribution of digital property.

The remedying of a breach of the GPL is also an evolving issue. Harm and loss, the
traditional paradigms of the atom-minded, are difficult to show in communities
where egoboo is the principal form of exchange. Other forms of loss have to be
argued. What is most sought from any infringer is an equitable remedy to

94 Note 83, para [2].
95 188 F. 3d 1115 at 1121 (9th Circ, 1999).

 35

96 Raymond Nimmer, “Breaking barriers: The relation between contract and intellectual
property law”, [http://www.2bguide.com/docs/rncontract-new.html] 1 May 2002.

http://www.2bguide.com/docs/rncontract-new.html

specifically perform by publishing the source code benefits of their changes to the
whole community. In addition, misusers of GPL code would be more wary to
impugn if they knew that upon a finding for infringement they could be held to
account for profits.

This aim of this chapter has been to overview the legal issues arising from the use of free
and open source software. In the technology community the idea of a free and open source
software model is not new. For the rest of us, including industry and government, the free
and open source revolution has just begun, and we need to learn more……

 36

Chapter 3

Live from Silicon Valley.
Views of Free and Open Source Practitioners

LARRY ROSEN

Rosenlaw.com, Silicon Valley USA

DAVID SCHELLHASE
Formerly Linuxcare, San Francisco, USA

YANCY LIND
Lutris Technologies, Santa Cruz USA

BILL LARD
Sun Microsystems, Silicon Valley USA

PREAMBLE

The following is a revised transcript of a seminar that took place on 7 June 2001 at
Santa Clara University Law School in California’s Silicon Valley. The seminar was
convened by Professor Brian Fitzgerald and run as a special session of his course
on ‘Digital Property’, and later as part of the Intellectual Property in the Digital
World Conference in March 2002.97 It showcased key legal figures in the free and
open source software community and provided invaluable insight into the practical
issues facing free and open source software licensing systems in a commercial
environment. The seminar was open to members of the Silicon Valley community.

The guest speakers were:

• Larry Rosen, Rosen Law.com and the Open Source Initiative
• David Schellhase, formerly of Linuxcare
• Yancy Lind from Lutris Technologies
• Bill Lard, Sun MicroSystems

97 Brian Fitzgerald, “Teaching Digital Property”,

 37
<http://www.scu.edu/law/FacWebPage/Fitzgerald/index.html>, (23 April 2001).

http://www.scu.edu/law/FacWebPage/Fitzgerald/index.html

Some of the material that follows was also re-presented by Larry Rosen, David
Schellhase and Bill Lard via live video link to the Legal Issues for Free and Open
Source Software Conference convened by Professor Fitzgerald at QUT Law School
in Brisbane Australia on 3 July 2002.

LARRY ROSEN – A LEGAL VIEW FROM THE OPEN SOURCE COMMUNITY

Lawrence E. (Larry) Rosen is an attorney and founding partner of Rosenlaw.com, a
law firm in California. He is a computer specialist. He has extensive experience
teaching computer programming and has been a department and product manager
in the computer and communications industry. As an attorney, his specialty is
technology, but he is also a skilled litigator and negotiator, and a legal advisor to
individuals and companies throughout the Bay Area and the world.

He is executive director of Open Source Initiative, a non-profit organization that
reviews and approves open source licenses and that manages the “OSI Certified”
certification mark for open source software.

Free Software Movement and Open Source

I am not religious about open source. My firm helps clients do both open source
and proprietary software licensing. There are many, though, who support free
software and open source software with religious fervour. Richard Stallman, for
example, the author of the GNU General Public License (GPL), is very religious
about free software. He draws distinctions between free software and open source
software – I hope I don’t offend anyone here – that is like drawing distinctions
between the Presbyterians and the Methodists; for someone like me who is Jewish,
I often can’t tell the difference.

I also think that most people that are out there dealing with software can’t tell what
the difference is between free software and open source software. But people like
Richard Stallman really do draw some very, very sharp distinctions. Here’s one
way of describing those distinctions. I would call the free software advocates the
“socialists” of the software community. (Some people who want to insult them call
them Communists,98 but that is really just histrionics; ludicrous arguments for
asserting that open source and free software means the end of capitalism as we
know it.) Many free software advocates believe that computer software should be
freely available to all as a public right.

 38

98 For a critique of the free and open source distribution model see: Mathias Strasser “A
New Paradigm in Intellectual Property Law?: The Case Against Open Sources” (2001)
Stan. Tech. L. Rev. 4 at para [85] who argues “In reality, however, Stallman’s vision suffers
from the fact that, as with any communist ideology, its appeal is likely not to be powerful
enough to attract sufficient manpower to develop enough free software to make it a feasible
alternative to proprietary code”.

Free software advocates say that software should be “Free as in speech, not as in
beer”, but as a practical matter, when using their approved software licenses like
the GPL, they really mean free as in beer too. That is because software that is
licensed under such licenses will inevitably be distributed, because of market
pressure, at zero price.

The word “free” when applied to software puts software companies in fear of their
profits, but that fear is unreasonable. As I will describe in a few minutes, even
though the price of software itself tends toward zero under free software licenses,
there are still ways to make a healthy profit from “free” software.

So open source advocates decided to change the name of the movement. The term
“open source” better conveys the “libertarian” notions of open speech (eg,
publication of source code”) rather than the socialist notions of free software for all
at zero price. The leaders of the open source movement created an “Open Source
Definition” to identify the required characteristics of licenses that promote the free
availability of source code and the free right to create derivative works therefrom.

At least initially, then, the open source movement grew out of a desire by
supporters of free software licenses to come up with a less frightening, and more
libertarian-sounding, name for the same thing. But fundamental differences, there
still are, between these camps.

All free software licenses meet the Open Source Definition (“OSD”) and are
therefore open source licenses, but the converse is not true: Open source licenses
are not necessarily free software licenses. There are many open source licenses that
allow licensees to create proprietary derivative works and that don’t also demand
licensing terms that inevitably drive the price of software itself toward zero.

The free and open source movement seeks to protect the rights of anyone,
anywhere, for any purpose whatsoever, to use, copy, modify and distribute
(sell or give away) software licensed under a free or open source license. As a
practical matter, this requires free access to the source code.

A key distinguishing characteristic of free software licenses, and of some but not
all open source licenses, is what I call the “reciprocity” requirement. The GPL, for
example, requires that any derivative works that are created based upon a GPL-
licensed work must in turn be licensed and distributed under the same GPL license.
Under such a reciprocal license, if you create a derivative work of an open source
program and distribute it, your derivative work is also open source.

Many open source licenses do not contain reciprocity provisions.

 39

Open Source License Key Criteria

The open source leaders, Eric Raymond and his colleagues on the OSI board of
directors, are the libertarians of the movement. They really believe that it’s
perfectly alright to make money from software. They support the balance struck by
Article 1, Section 8 of the United States Constitution, which provides that “The
Congress shall have Power ... to promote the Progress of Science and useful Arts,
by securing for limited Times to Authors and Inventors the exclusive Right to their
respective Writings and Discoveries”. That means to them, however, that software
copyrights ought to serve public purposes and not just be a vehicle for making lots
of money.

The Open Source Definition (“OSD”), which is managed by the non-profit
corporation Open Source Initiative, defines certain licensing principles. It is a set of
standard criteria for open source licenses. If a license meets those standard criteria,
and if the license is approved by OSI, then the “OSI Certified” certification mark
can be applied to any software distributed under that license. The certification mark
gives people a way of knowing that the software that they’re buying is licensed
under a license that meets those criteria.

Any license that meets the OSD must provide for free redistribution. That is,
someone should be able to take that software and redistribute it for free. While free
distribution must be allowed under an OSI-approved license, a license cannot
prevent someone for charging for the software, as long as any recipient of a copy
retains the right freely to copy and distribute the software, and to use the source
code freely to create derivative works. In practice, much software under such
licenses will be driven to a zero price.

My 95 year-old mother will do nothing with source code. Having source code
available to the average user is of no use whatsoever. But, for other programmers,
or for companies that want to take advantage of the source code so that they can fix
their own bugs, or when the vendor says, “I’ll fix it when I’m ready for it”, having
the source code is a real advantage.

The availability of source code serves the goals of the US Constitution, in its
expression of the purpose of copyright laws in the first place. If you can have the
source code available you can learn from it. Programmers can learn from each
other. They can figure out what other people have done and they can copy it. It’s
copyrighted, but you’re free to copy. And, because you can copy, you can make
better stuff. You can make derivative works. You can make improvements.

 40

Any OSI-approved license must give the licensee permission to make derivative
works. It’s not just “give me the source code”, but “give me the opportunity to do
something with the source code, to create new things, to make improvements, and
then to do what I want with those improvements”.

Some restrictions or requirements on licensee behaviour are compatible with the
OSD. For example, a reciprocity provision such as the one I mentioned earlier, says
“you can make improvements and you can distribute your improvements but you
also have to give them back to me”. An open source license requires creators of
derivative works to publish the source code.

Any OSI-approved license can provide for the integrity of the author’s source code:
“If I write code and put it out there, you can’t take the code and erase my copyright
notice. You can’t put your name on it as if you wrote it.” It is important that people
be given credit for what they do because, all these people out there doing all this
stuff for free, what are they getting? They’re getting a t-shirt and they’re getting
their name out there. They’re getting some sense of pride. Quite frankly some of
them work for less than t-shirts. We have to have a way in the license of ensuring
that the person who is contributing to the software is able to protect the integrity of
his work.99

An OSI-approved license cannot discriminate. You can’t say for example, “This
software cannot be used for the manufacturing of weapons”. You can’t say, “It
can’t be used by the tobacco industry”. You can’t say, “It can’t be used by people
of a certain race or colour”. You have to make your software available to everyone
for any purpose.

In an important sense, what the open source advocates are trying to do is ensure
that software licensing promotes their philosophy about software. It is not a matter
of trying to force the price of software to zero. It is not a matter of imposing the
religion of open source on everybody. Nobody is forced to distribute his software
under an open source license except when a licensee creates and distributes a
derivative work of software that is made available under license with a reciprocity
requirement. Even that reciprocity condition satisfies the balance required by the
US Constitution, in that it gives the original copyright owner the choice of setting
the terms and conditions for the privilege to create derivative works. Open source
software distribution relies on the copyright laws just as proprietary software
distribution does.

 41

99 In this regard consider the notion of moral rights to attribution and integrity of a work
which have long been part of the law of continental Europe. Australia adopted a moral
rights regime in December 2000 through the Copyright Amendment (Moral Rights) Act
2000. For an overview of the very limited protection of moral rights in the USA see: Carter
v Helmsley-Spear Inc 71 F. 3d. 77 (2nd Cir. 1995); Gilliam v ABC Inc 538 F. 2d. 14 (2nd Cir.
1976).

Derivative Works

It is important for me as an attorney to care about what my clients care about,
which is to create good software, to release it to the public, and to get credit for it
and to be part of a community. Then they say, they also want to make some money
out of it. This creates a tension that I don’t think anyone in the open source
movement yet knows how to address completely.

One can make money on open source software by selling services. That is not easy
to do, and free competition makes high profits difficult to achieve in the service
business. Indeed, it isn’t just the open source companies that are struggling to make
money in this way; proprietary software vendors too have implemented the
“support” model and attempt to profit from their software by selling services.

In another example, one of my clients has an open source product that is supposed
to integrate or allow the inter-working of instant messaging services. My client
makes money by creating and distributing proprietary add-ons to his own open
source software. They are licensing their client software as open source and their
server software as proprietary.

Another kind of tension going on within the open source movement arises when
companies try to get control over what is happening to their open source software.
Such companies say, “Take this software, I give it to you under an open source
license”, but like reluctant game-players, their fingers never leave the ball. They
are still latching on. They try to control what kind of derivative works can be
created, or whether derivative works can be sold for a profit. Those controls cannot
be written into an OSI-approved license.

There are many open source licenses. Which one you use for your software
depends critically on your business model. When a client comes to me and says,
“What license should I use?” I say, “How the hell do I know! What’s your business
model? Tell me what you want you want to accomplish. Tell me what you want to
get out of your software licensing”. Then I may point to a license that already
exists, if we’re lucky an OSI-approved license. I may copy and modify a license
from another company, or write a new one.

Let me just tell you a couple of typical licensing issues in the life of an open source
attorney. These issues are things that are interesting to me partly because I don’t
have really good answers yet.

I have a client who writes proprietary software and his proprietary software can be
used with Samba, an open source program distributed under the GPL. My client’s
software doesn’t strictly require Samba, but Samba is one of the programs it links
with for certain uses. My client wants to deliver Samba on his CD along with his
software. So far that’s easy. Even under a license with a reciprocity provision, like

 42

the GPL, it doesn’t affect your program if you merely place the GPL-licensed and
proprietary software on the same CD.

But there is a slightly more intimate connection between Samba and my client’s
proprietary program. In order to make his program work with Samba, he had to
change Samba. So he took Samba and he wrote some new things in it, some little
modifications. And then, he has his program (I’ll call it “X” to protect the
attorney/client privilege), and he wrote some stuff designed to link between those
two programs. The problem is that the GPL says that if you create a derivative
work, you have to license your derivative work under the GPL.

Now as a lawyer here’s what I told him:

Based upon the way you described your modifications, you have created a derivative
work. You have drawn Samba and your changes to Samba functionality in one box on
your system diagram. Therefore, under the GPL, you have to publish the source code
of your derivative work, and you have to license your modified Samba program under
the GPL.

But what about his proprietary program, X? Since he kept X totally separate from
the Samba modifications, I told him “this is not a derivative work of Samba, it’s a
separate program”. I have previously argued that if you make changes to a GPL-
licensed program, that is statically linked to your program, then you have created a
derivative work. But regardless of the form of linking, if your work is clearly not
based, in any way, upon the GPL-licensed program, you have not created a
derivative work.

There is as well an open source issue about what is copyrightable subject matter.
Suppose you publish a standard, a specification, that tells people how to implement
something, and someone reads that specification and goes out and implements it in
a program distributed under an open source license. That person sits in a room
somewhere and writes code based only upon the published specification. Is what he
implements a derivative work of the standard? Is the author of the program subject
to license conditions in the license to the specification? Can one have a copyright
on a specification?100 Certainly there is no question that one can have a copyright
on a printed version of the specification. Anything that you can put down in writing
is copyrighted in that sense. But can you have a copyright on the ideas expressed in
the copyrighted work? Just the way I phrased it made the answer obvious. An idea
is not subject to copyright. But when an idea is expressed in a copyrighted work,
and the work is licensed with restrictions on how the idea can be used, can other
expressions of the idea be restricted. That would be incompatible with the
philosophy of open source and, in the business of open source licensing, there are
interesting questions like that. What is the limit of what you can copyright? What is

 43

100 Pacific Gaming Pty Limited v Aristocrat Leisure Industries Pty Limited [2001] FCA
1636.

the limit of what you can license legitimately? How do you license it? And, who
has the right to be the licensor of an open source work?

Let me give you a third interesting example. I have a client who writes a very, very
popular open source program and that program appears on computers all over the
world. Lots of people use it. It’s frequently distributed under the GPL with Linux
and other operating systems, and I’m going to call it program Y. My developer
client found a hardware system, a piece of hardware with a keyboard and a monitor
that is sold by a computer company. The hardware has no disc; instead, inside is a
flash card and on that flash card is my client’s program.

By integrating my client’s GPL-licensed software on a flash card in hardware with
other “proprietary software”, has the hardware manufacturer created a derivative
work that must be licensed under the GPL? That proprietary software links to my
clients program in some way. Does that mean that all the other software in that box
is a derivative work of my client’s software? Or only part of it? What is the
implication of hardware being treated as a derivative work of a copyrighted
program? Is there a difference between software that comes on a floppy disc or
software that comes on a CD or software that is embedded in hardware to the point
where it is indistinguishable by consumers from the box itself?

I don’t know the answers to these questions! Now that my client’s software is on
that hardware box, can we force those people who created that hardware to obey
the GPL and publish their source code? This question has never (yet) been
litigated.

Standing to Sue

Also on that box is Linux. And Linux is also licensed under the GPL, so why don’t
I just say “Listen client, let’s not sue based on your GPL software, let’s get the
owners of GPL Linux to sue, lets get a company like Red Hat that distributes Linux
to sue to protect their rights, and let them enforce the GPL terms!” That’s not as
easy as it sounds. Who can enforce the GPL? Well, the copyright law is really
clear about this. The only one that has the standing to sue in a copyright action in a
federal court is the owner of the copyright or the owner of an exclusive right under
the copyright law. Who owns the copyright in Linux? The individual owners of
each contribution to Linux, each of whom licensed their code under the GPL, can
protect their own copyrights, but there is no “big Linux” person with standing to do
so. Each contributor owns the copyright to a little piece of Linux, and individually
none of them can afford to sue. And a mere distributor of the Linux software, even
a company as large as Red Hat, doesn’t have standing to protect the copyrights in
Linux software, because it merely has a non-exclusive license (the GPL) to copy
and distribute Linux.

My client’s GPL-licensed program, however, the one that I described above, does
have clear copyright ownership. I know because I helped the original author

 44

register the copyright and formally transfer ownership of an exclusive right to a
company that thereby has standing to sue to protect the copyright. That’s essential
for him to have standing to enforce the GPL.

Richard Stallman and the proponents of free software would like as much software
as possible to be forced into the free software world. So why don’t they expand the
reciprocity provisions of the GPL to include “collective works”, not just
“derivative works”? Referring back to my earlier example, putting Samba together
with program X on the same CD would create a collective work.

Obviously, no licensee would accept software that came with a license provision
that forced all software placed on the same disk to be open source; such a change
would make the GPL unacceptable.

The boundary lines of “derivative works” in the software world are still uncertain.
That makes enforcement of the GPL a tricky proposition. What most often happens
is that a “cease and desist letter” works to stop activities that breach terms of the
GPL. This isn’t because of the fear of litigation, but the fear of what the other
hackers are going to say. So the GPL licensors win their battles without having to
go to court. I think that the GPL and the ambiguity of the GPL has served some
people well, despite the desire of lawyers like me to find clear and unambiguous
answers to the tricky open source licensing questions I’ve identified today.

DAVID SCHELLHASE – AN IN-HOUSE LAWYER’S CONCERNS

David Schellhase, works in-house as an attorney with Linuxcare, a Linux services
company.101 He is currently writing a book Inhouse: The Practise of Law Inside an
Emerging Growth Company. He has also worked as an attorney for a number of
law firms in Silicon Valley.

Open and Closed Software Legal Issues

Proprietary

I want to contrast the worries I have as a lawyer, being from a proprietary software
company as compared to an open source company. Lawyers worry a lot about a lot
of different things. We let business people worry about making money. We’re
worried about keeping money. In a proprietary software company, you have far
fewer worries – it’s a closed system in effect. You worry about employees, you
worry about customers and you might be worried about some people whose
products are infringing. If you’re at the centre of this system, and it’s a relatively
closed system, it’s a very closed loop in effect. I’m worried about getting rights
from my employees, I’m worried about giving the proper rights that my customers

 45

101 www.linuxcare.com.

http://www.linuxcare.com/

deserve in a license agreement and no more. Basically I understand my universe
very well. All these employees have signed a proprietary information agreement or
they don’t come to work for us. All the customers are going to sign a license
agreement that limits our liability to within acceptable limitations, which gives us
some recourse against them if they’re out giving our technology away for free and
so forth.

Open Source

In an open source company there’s lots more to worry about. From the open source
company view I’ve got not only my employees and not only my customers, but
there are dozens, maybe hundreds, maybe thousands of potential owners of
intellectual property who are really outside this neat little closed system. Plus, there
are hackers who might be contributing to some of my ongoing projects for
customers. I’ll just give you one example of technology that the company that I
represent has worked with a lot. It’s a technology called Samba that is a file print
sharing technology for Linux. It basically turns Linux into Windows NT in effect.
Samba was written by a former employee of Linuxcare, but long before he got to
the company, so it exists somewhere out there in the ether on samba.org. Many
customers, specifically hardware OEM’s (Editor’s Note: Original Equipment
Manufacturers) who are interested in proliferating their hardware devices, are
interested in Samba because it seems like a cheap alternative to Windows NT. In
combination with Linux it seems like a free alternative. But they need to optimise
their hardware boxes, so they call Linuxcare and look for us to consult. When that
happens I’ve got a huge number of worries. I’m worried about all kinds of potential
owners of property. I don’t know what’s in Samba. Samba is a million lines of
code. I don’t know where it came from. It pre-dates my company by many years.

The Samba organisation hasn’t necessarily said we’re going to give you all the
rights that we have from our contributions to the Samba code. And if we’re making
new contributions to the Samba code, we may want to give those back to
samba.org. We may not want to give them to you, so you can’t give them to your
customers. So your customers who are paying good money for the delivery of some
kind of code, maybe won’t get the indemnities, limitations, liabilities and
warranties they expect from a proprietary software vendor. That’s a big problem,
getting big companies, big hardware OEM’s over the hurdle of understanding that
they may not get all the nice warm fuzzies.

[The following table, which was handed out by David Schellhase to the seminar
participants, highlights these points.]

 46

TABLE 1. SELECT LEGAL ISSUES IN SOFTWARE

Open Source Products Proprietary Products
Concern
level

Ability to do
something
about the
concern

Legal issue Concern level Ability to
do
something
about the
concern

(Pre-release)
High Medium Employees holding back

rights
High High

High Low Copyright and trade
secret infringement

High Medium

Medium Very low Patent infringement High Medium

(Post-release)
None Very low Warranty High High
None Very low Intellectual property

infringement
indemnification

Medium High

None High Unusual license
provisions (channel
readiness)

High Medium

Employee Problems

Our biggest problem is with the employee base and hackers. The employees don’t
want to sign proprietary information agreements. They don’t want to say, “You, the
company, own every piece of our work product”. That’s not what they’re interested
in. If they were interested in money, they probably would have developed Samba’s
proprietary program and would have sold it under a more proprietary licensing
scheme. It wouldn’t be GPL’ed. It wouldn’t be out there for free. So they’re
motivated by different things. It’s very easy to motivate people who have bought
into the capitalist system. It’s very difficult to motivate employees who have a
different incentive for coming to work everyday, because we’re just not sure what
that is. Corporations in the American capitalist system aren’t set up to reward
people with warm fuzzies or whatever else it is that people work for. So, I have got
a lot of worries about my employees.

I’ve got to figure out a way to get what Linuxcare needs and to deliver to
customers what customers are demanding out of these employees who are out of an
organisation that exists in the ether and isn’t beholden to anybody. My employees
may work for that organisation and contribute to it from time to time, but they’re
not identified as Samba Inc, it’s Samba.Org. They operate by consensus largely

 47

and many of those people involved in that organisation don’t work for me, they
may not like me.

Hackers

Furthermore, I’m worried about these hackers because Samba is an ongoing
project, and there are a lot of hackers out there who are contributing to it. When my
employees are on a job for a customer, they may use some of the code developed
by these hackers that isn’t yet in the mainline Samba code. They may be using bits
and pieces of new stuff and I don’t know where they got it. They may be asking
their friends, half a world away or more, to write a few lines of code and give it
back to them by email overnight. This happens all the time in this world. That’s a
very difficult thing to understand coming from a proprietary world. It’s also very
difficult for customers to understand. So the number of worries goes up
astronomically, maybe exponentially, as you move from the relatively closed
system of the universe that you understand, to the much more open system of the
universe that you don’t understand and may not know about. Lawyers obviously
fear the unknown, because they can’t control the unknown. There’s a lot more fear
and a lot more worry here. The crux of the matter, the relationships with the
employees, is critical. Convincing the customer that they are not going to get all of
the rights that are used to getting is the other big hurdle. So you’ve got these two
big hurdles and lots of ancillary worries along with it. In some respects it’s a
daunting challenge and it’s interesting that Bill said it costs more to give your code
away. That may very well be. I don’t know of a truly profitable open source
company yet and it’s unclear whether there will be one. Linuxcare has raised close
to 80 million dollars in venture capital. We’re down to less than 10 million and it’s
unclear that expenditure wasn’t just handing our customers a bunch of very steeply
discounted consultancy services. That’s not clear, we don’t know.

I’m really more worried about customers. I’m more worried about HP than I am
about a hacker in Czechoslovakia. A customer might sue because a piece of code,
which we have said is good code, which we have good rights to, wasn’t written by
us. So a hacker comes along and says, “Oh, I see that HP is incorporating a line of
my code. I’m going to go and sue Linuxcare, or I’m going to go and sue HP”. HP
is going to say, “well these guys indemnified me, these guys said they created the
code”. Even if there are no warranties and indemnities in the licenses, try
convincing a big multinational hardware company that they don’t deserve the
indemnity. Sometimes you just hold your nose and hope.

A more likely scenario is one of our employees found a piece of code and said this
is out there under the GPL, or under some other license, and it’s an elegant solution
to my little problem which has been vexing me all night, I’m going to take it. A
consulting company model like ours gives the rights in what we are doing for the
specific customer. You give them the ownership of it. You may retain a license
back but typically you give the rights to them, so they feel that they have
ownership including copyright and the ability to patent it. So you need to make

 48

sure that your getting a full license back. They may actually own that code. This
has not been litigated. A number of actions have been settled where, under GPL in
particular, a code found its way into a product, and was discovered. Typically what
happens is they take the code out or publish their sources and it goes both ways.

I think what you’re seeing in the open source world is some very strange
bedfellows. And it’s not clear to me that the marriages are going to last. I think
there are some inherent problems between the people who believe in community
values versus the sorts of folks who want to use open source software for
commercial purposes. I think that there could be a big dust-up, and the dust-up is
coming. It may not be a big dust-up, it may be that the two go their separate ways. I
think they have had a flirtation, they may have gotten engaged, they may now
actually be married, but I don’t think it’s going to be too long before there is a
separation and maybe even a divorce. The people who are most interested in open
source software are historically the larger corporate hardware vendors. They are
interested in ubiquity for their hardware platform, and, for want of a better term,
they are software agnostic or operating system agnostic. They love Linux, they
love Samba, they love some of the other open source software when it fits their
purposes. When it doesn’t, or if it turns out it doesn’t, there will be hell to pay, or
they will go back to the closed system that they’re used to.

Don’t get me wrong. There is plenty of risk in both kinds of models as companies
are finding out. These other owners of software, people like IBM, have hit up
companies, famous companies that you all know the names of, for millions and
millions of dollars in patent licensing revenues over the years, and will continue to
do so. The whole landscape is fraught with peril, but people continue to do
business. It’s not clear to me that the hacker community or the open source
community is going to want to continue to do business with the larger hardware
vendors when they figure out what the hidden agenda is. And the hidden agenda is
that monogamy is great, as long as you know it is with me, and my systems. You
know: “Don’t cheat on me with HP or IBM or Compaq or anybody else. Stick with
me”.

I got a call from a friend of mine the other day who is the CEO at another open
source company of fifty people or something and he said: “My open source
developers are in revolt”. He meant that it is really difficult, because these people
tend to march to their own drum. So the answer is, you do it very delicately and I
will give you some prime examples. We have gone from 280 employees to 30 by
the way. When we had 280 employees, not everyone of them had signed our
proprietary information agreement. That’s a big problem, and that necessitated
some interesting dances with our customers. We have had these issues where we
have had to go to customers and say: “You know what, we don’t have all the rights
you want. You are going to have to sign a license that doesn’t look anything like
your Oracle or Microsoft license. It basically says: ‘You’re going to take a lot of
risks with us, and we’ve all got our fingers crossed. We think that these things are
OK and we don’t think we are infringing, but we can’t give you ownership rights

 49

or a good warranty’”. That all went back to our handling of relations with
employees. We didn’t want to alienate them by forcing them to sign what they
viewed as an onerous, burdensome proprietary information agreement that
everybody in Silicon Valley sort of signs when they join a company, and forgets
about. So the answer is I think people are still confronting it.

Luckily we are a consulting company. We don’t have the problem some of the
product guys have, which is: Why should I pay you for something that is available
on the web free? That is the Red Hat problem. We don’t have that problem because
we are providing bodies and bodies do have a cost. For a senior developer we can
still charge $200 an hour. Even though you may not own my product you still get
some kind of a license to it, or you get to pick that person’s brain and maybe get
your people to code it or something like that. So it’s not a perfect model and it’s
really not perfect if you’re a big hardware vendor used to squashing everyone and
getting your way.

Patents

I’m less worried about patent infringements. The potential patent owners, the open
source developers, are also the ones typically interested in spreading and
proliferating open source technology. If we’re talking about a hardware vendor or
somebody who is a software vendor, whose application sits on top of Linux or
something like that. These guys are much less worried about the hackers because
they tend to not have the resources that leads you to worry about patent litigation. I
mean that’s a game for rich people. These people tend not to be rich. And they tend
to be free about their intellectual property and they’re less likely to bring the patent
suits.

If I’ve got huge economic resources, if I’m big enough, they will come calling on
me. We will do some kind of cross license because I’ll have some patents too that
they’re probably infringing. So I agree in the abstract, it is a huge concern, and it
can paralyse you, if you really think hard about it, because there are so many
elements to it. But, I’m not so worried about it on a practical day-to-day basis.
Worry about the other stuff.

Being a defendant in a patent infringement case, particularly in software, is a high
class problem to have. I’d love to have that problem, because it would probably
mean I would have a hundred million more in revenues. It means I’m probably
with a profitable and successful company.

 50

YANCY LIND – A BUSINESSPERSON’S VIEW

Yancy is CEO of Lutris Technologies in Santa Cruz, an Internet middleware
software company.102 He is a businessman, not an attorney, and aims to make open
source companies commercially successful.

Lutris Technologies and Java Application Server

We are in a really interesting transition phase right now where it’s not clear at all if
the marriage between corporate America and open source is going to survive. We
make this thing called an open source Java application server (JAS). JAS is an
important piece of middleware software. If you’re going on the Internet today, you
typically don’t go to web sites for very long. Apache is out there, but you quickly
get handed off from a web server to a thing called an application server. An
application server is what makes the Internet run today, it’s how you get to back-
end processes like databases and e-commerce systems. The JAS is the critical
battleground right now in the software community. Whoever controls the JAS will
control software computing for the next 20 years. That is why in a list of 5 types of
licenses put up there by Sun, there is one license that was exceptionally closed
compared to the others and that was around Java.103 Because Sun realises that the
most important piece of technology that they have today is something called Java,
and it’s got their most restrictive license around it.

So, what is open source software? The answer is – it is wide open for debate right
now. A lot of companies and groups have shared source code and software
development over a lot of years and it really has had some wonderful things come
out of it. You know TCP/IP is a great example of the early days of this whole idea.
The term open source software came out of the Freesoftware Foundation because
they realised you could not go around selling free software and have it accepted in
corporate America. So they had to come up with a new name and called it open
source instead.

There’s really good reasons beyond that. There’s this idea in the open source
community that we want to have this freedom of intellectual purity. We want to be
able to share ideas, but we don’t necessarily want to be able to rip each other off.
So there is this very famous saying in open source that says, “Open source is about
free speech, not about free beer”. And that means we’re all about sharing ideas, and
working together to make things better, we’re not all about giving away money.
We still have to figure out how to make money.

We don’t think the GPL is a good license frankly, because of the viral aspect of it.
The core issue is “Are you interested in satisfying the hacker community or are you

102 http://www.lutris.com/.

 51

103 See the section of this chapter on the Sun Community Source License.

http://www.lutris.com/

interested in somehow making money?” That’s really what it comes down to in a
corporate sense, not as an individual. The GPL in particular applies to this ethic.
This whole idea about the hacker community and people who are just individuals
out there making sure that they can contribute and that they can be in this large
group of alpha geeks. My code is better than yours. I can do that better. There is
this whole ethic around that and the GPL is a license that appeals to that ethic.

What is it about open source that really appeals to me as a businessperson? Well,
it’s this idea of innovation. It’s just a wonderfully powerful idea. We really do have
this large three thousand-member development committee who actively work with
us and innovate and share ideas with us. We’ve gone off in directions and had
wonderful breakthroughs because people were working with us. The lack of a
single vendor dependency is just an incredible benefit. Self-reliance to fix bugs –
companies do like to have the source code. They like to know that their alpha geeks
on their staff can get inside that product and do something with it. One of the really
big issues in software development is relying on the vendor’s release cycle. What if
I have a bug that has to be fixed now and I can’t wait for three months for your
next release cycle.

Case Studies – Plantronics and General Electric

We go into big companies and build things with them. One was called Plantronics.
They are the world leader in headsets. They had us come in and start building a
very large e-commerce system for them. They started out using [a major
corporation’s product], which is a direct competitor to my product. They started
finding some bugs in the product and it didn’t do as advertised. They went through
all the traditional kind of mechanisms that the competitor provided such as support
groups. Finally there is just a bug and how does it get fixed? They call up the
competitor.

“Please fix this bug”.
“Well, how many copies are you going to buy?”
“Well, we’re going to buy one.”
“Okay, we’ll try to get to that bug in our next release.”
“When is that going to be?”
“Well we’re not sure”.

And there they are, dead in the water.

So they threw out the competitor’s software and Lutris came to the rescue. We
were able to show them the power of having access to the source code. Use our
application server versus that application server and if you have a bug in it we will
fix it for you right there, or you can fix it. Whatever the case, there is the code.
Here’s all the build utilities, all the make files, all this kind of stuff – just go!

 52

I’ll give you another example. GE is one of the largest companies in terms of
market capital in the world today. Their largest division is the home appliance
division. They make things like washing machines. They recently threw out [a rival
company’s] application server in favour of my product. They did that for a very
similar reason as Plantronix. One of the great things about Java is that it can be
decompiled. [Editor’s Note: a decompiler takes executable code of a program and
turns it into source code]. That means that people like Sun don’t like that, but
developers love it, because you can still get access to the source code. So what
happened was GE found a bug in the rival’s application server. They wouldn’t fix
it, wouldn’t give them any time of day. So internal IT guys at GE decompiled the
application server, found the bug and sent the fix back to our rival company. They
said “How neat, we’ll get that into our next patch release!” And, GE said “That’s
great” and ripped it up and put our stuff in.

Two very powerful real world examples of why open source software is a
wonderful, wonderful tool. True value to customers. Value you could never get
from a closed source product. From a businessman’s perspective I have got a
product that competes with the giants of this industry who have hundreds of
engineers working on these products. I have forty. My product many consider to be
superior with a fraction of the engineering costs. So, just from a pure return-on-
investment perspective, open source is something I can leverage massively to give
me a real economic advantage.

Commercial Viability of Open Source

So, open source is a great thing. Is it working? The answer is yes and no.
Unfortunately there is a no to it. It was only three years ago that open source
software really came on the scene from a mass consciousness kind of perspective.
They’re talking about it because of the fact that there is a wonderful PR angle.
There is this David versus Goliath angle going on with Red Hat versus Microsoft.
Three years ago Red Hat had not gone public yet and there was this thing called
Linux. And there was this great article out there called The Cathedral and the
Bazaar.104 Press people were drooling over this stuff. And suddenly open source
software burst on the consciousness.

A lot has happened in the last three years. Open source software has moved out of
the fringes and is the main stream today. There is no doubt about it. Open source
software has absolutely proven itself as an extremely powerful software
development methodology. The best application server in the world is mine. And
it’s open source software. The best web server in the world is Apache, there’s no
doubt about it. It’s open source software. Many people would consider Linux to be

 53

104 Eric Raymond, The Cathedral and the Bazaar, version 2, 24 August 2000,
<http://www.tuxedo.org/~esr/writings/cathedral-bazaar/cathedral-bazaar/index.html> (27
July 2001).

http://www.tuxedo.org/~esr/writings/cathedral-bazaar/cathedral-bazaar/index.html

the best operating system in certain niches. It’s open source software (OSS). It’s
clear that OSS has proven itself as a software development methodology.

But it’s not at all clear if there will ever be a successful stand alone software
company using open source. Because, the only way it looks like you can make
money off OSS is by packaging it with something else. It’s a great way of
maintaining margins for existing products. Hardware companies love OSS because
they can maintain price. The number one problem that hardware companies have
today is maintaining margins. That’s it! And you can only manufacture your
margins for so long before you just get to a certain point where you can no longer
squeeze another penny out of your manufacturer. So you have to bundle stuff in
and open source software is great for that.

So, some examples as to why hardware companies love this, or some proof of this.
IBM this year is putting one billion dollars into OSS. A lot of money right? But for
them, not that much. It’s a way to harvest out of the OS community, package that
stuff into their hardware, and be able to maintain their pricing of their hardware,
maintain their margins. Hewlett Packard have stated publicly that Linux will be
their only operating system within five years. HP-UX will be gone. They won’t be
selling any Microsoft products. It’s an amazing statement, unbelievable. Compaq
right now is the number one Linux platform in the world. And even Sun is making
some moves towards OSS. Everyone is moving there.

But OSS has not created any viable stand-alone software companies. There is not a
single example of success. Lots of failed struggling companies. Anyone in this
space right now is hurting big. And it’s not clear if it will ever be profitable. And at
the end of the day, if it completely collapses, we’re going to be back to the good
old business model that I used to have to worry about which is profitability.
There’s not a single OSS company that’s anywhere close to being profitable.

It’s an interesting time to watch what’s going on here, because what we are seeing
is these huge computer companies saying: “OS is the future”, but software
companies struggling with how we’re going to make it. My company included.
And, the other interesting part is if you look at most of the OSS projects out there
today – they’re not alpha geeks – they are actually employees of big companies,
making it happen. Most of the developers who work on Apache today work for
either Sun or IBM. That’s just the truth, most of the developers who work on
Apache today are doing it because a large hardware company has an economic
interest in seeing Apache succeed.

 54

BILL LARD, SENIOR DIRECTOR OF LICENSING STRATEGY AND ARCHITECTURE
AT SUN MICROSYSTEMS

Bill Lard is Senior Director of Licensing Strategy & Architecture at Sun
Microsystems, Inc. He has been an Attorney with Sun for nine years handling
software related matters. His current role is to establish the future direction of Sun's
overall technology licensing strategy and architecture.

Introduction

This section of the transcript looks at a Sun public license that does not have OSI
approval and is called a “community” license – Sun Community Source License
(SCSL) Version 2.3. This is not to be confused with the Sun license that does have
OSI approval as shown in section 2.5 of this article. Sun has slightly different
SCSL’s for each product. The license considered for this article relates to their Java
2 Platform that provides “Write once run anywhere” capability for applications
developers.105

The main features of the license are that it:

1. requires developers to become a community member by entering into the
license;

2. under research use rights, limits distribution of source code of the original
contributor to other community members;

3. requires licensing back to Sun of source code for ‘Error Corrections’ “as
soon as practicable”;

4. allows distribution of fully compatible, object code to third parties as part of
a value-added product under a license of their choice, consistent with the
SCSL once Sun and the licensee have signed a “commercial use” attachment;
and

5. compatibility of licensee implementations must be determined by use of the
Technology Compatibility Kit supplied by Sun.

Serial Licenses

An important consideration not really legally tested today is that true open source
licenses are entered into serially. You can receive source code in a chain that was
originated by someone 100 people before you, so privity of contract starts to wither
away. Now the GPL supporters believe that anyone who makes a contribution to an
open source bundle who has copyrights, and has retained those copyrights, also
retains the right to sue on copyright infringement based on the copyrighted code in
that bundle. So if you download some code that’s got 1000 contributors and you

 55

105 Java 2 Software Development Kit version 1.3.1 Sun Community Source License
<http://www.sun.com/software/communitysource/java2/index.html>, (23 February 1999).

http://www.sun.com/software/communitysource/java2/

utilise it in a way that’s inconsistent with the license, you’ve got a potential claim
by any one of 1000 people for copyright infringement and possibly breach of
contract. But like I say, it’s not tested, so we don’t know whether the courts would
find standing for an early contributor whose contribution had been substantially
diluted over time.

Viral Nature and Inheritance

The Linux operating system is available under a combination of GPL and LGPL
and the distinction here is really important. They require you to license your
technology back, under the very same license, not just any old license. You may
have heard of the viral impact of GPL code. The Free Software Foundation prefers
to use another term, “inheritance”. To put this in context, Sun has a proprietary
operating system called Solaris. It’s our Unix environment that we use for all of
our products and everything we ship is based on it. It comes from a very long
heritage of technology that was developed in Berkley and AT&T and then after a
while it was licensed under a proprietary license by Unix Systems Laboratories, a
subsidiary of AT&T. Over the years the Solaris code base has acquired a
substantial amount of third party technology that had confidentiality requirements
and a variety of other restrictions. That technology cannot be, in whole, made
available under an open source license because of this contractual baggage. If we
were to take GPL code and integrate that with Solaris, there are circumstances
where we could wind up with an obligation to open source the Solaris code base
under the GPL. It could create a situation where we’re either in breach of the GPL
or in breach of contract with a bunch of folks that had contributed to the Solaris
code base over many years. So this is a really critical concern if you’re going to use
technology that’s licensed under either GPL or LGPL.

I might mention that the LGPL code was designed to provide for interaction with
proprietary software, but primarily for libraries. It was designed to do that where
the free software community wanted to make sure that their libraries were used
because there was more benefit to having even the proprietary guys use them, and
make them standard, than to hold back and try to force people to have their code
become open. That’s an important distinction and it’s also being used now in a way
that I think is very interesting. If you want to take GPL code and use it in some
way in conjunction with proprietary code, you may be able to do so if you use
LGPL code as an abstraction layer between your proprietary code and the GPL
code. It’s important that the GPL code is dependent on the LGPL code and not the
other way around. Otherwise, the LGPL code may be converted to GPL code and
your proprietary code may be affected as well.

 56

Sun Community Source License: A Non-OSI Approved ‘Public’ License

So here’s the one the open community guys have given us a hard time about - The
Sun Community Source License. It is a public source license, but not an open
source license. It provides technologies that were developed at Sun in conjunction
with many of our industry friends. It makes the code available publicly, but under a
different licensing model. The reason the community license is used is because the
number one value proposition behind Java technology is compatibility, “Write
Once, Run Anywhere”. You can write an application once, and it will run on any
Java platform regardless of the microprocessor and operating system if it’s a
compatible implementation of Java. In order for that to work we need to make sure
that people do not fork the code106 and create non-compatible implementations and
take it off in a different direction. That being said, in the industry, even in the open
source world, people tend to manage compatibility very well. If you look at Linux,
there are six flavours of Linux, but they’re not that different in flavour. The
difference here is that the community developing Linux has an incentive to have a
compatible set of implementations of the Linux operating systems so all Linux
applications will run on any of them.

In the case of Java, there is at least one company that would prefer to see one
platform rather than applications that run on all platforms. They have the ability to
basically take the developer base and move them away from what would otherwise
be applications development for a broad set of microprocessor and operating
system platforms. You can’t just say we’ll trust the world to make sure this doesn’t
happen. So as a result of that, we do a few specific things. One is, we have a public
source license. So if you want to get Java technology you have to go to the website,
click on the license and accept it, and that puts you in privity of contract directly
with Sun. That takes care of many concerns about enforceability and standing.

There are a couple of other things that are important about the community license.
It’s not fully open to the world. We only allow downloads to countries where we
are comfortable that intellectual property protection and enforcement is reasonable.
There are about 50 countries on the list. The rest of them currently are not available
to download. Granted, you can take that technology, download it to the UK and get
in your car and drive to Libya, well with difficulty, but I mean, you could do that,
so there are those that would argue that we are not protecting much. Nonetheless,
we think it’s important to limit distribution to those areas where we know Sun will
be able to enforce the license requirements. So that’s basically the Community
License.

 57

106 Code forking involves creating a derivative or modified, privately controlled product that
has not complied with industry standards and thus leads to a multiplicity of forked private
versions. See: Marcus Maher, “Open Source Software: The Success of an Alternative
Intellectual Property Incentive Paradigm” (2000) 10 Fordham I. P., Media & Ent. L. J. 619
at 678.

Issues in Public Licenses

So why a public license? I mean what in the world would possess someone to give
away technology? In the 70s where developers at universities were basically using
their operating systems as their research base, if someone working on code had a
problem with it, finds a bug, or it locks up, if they leave for the day and are the
only one that has access to the source code, the guy that comes in and wants to
work in the evening cannot use the system because it has got a problem. If you
make the source code available to all the researchers that are running on that
server, and someone has a problem during the evening, they can go in and fix the
bug, if they’re competent to do so. So this evolved into group development in a
relatively closed way, that grew to be much more worldwide over time, particularly
with the Internet. Starting in ‘92 with Linux in particular, but from ‘95 on, when
the worldwide web became the vehicle for getting access to the Internet, the
amount of people exchanging code in development just exploded worldwide.
That’s why you’ve got so many thousands of developers today that are working
with Linux. So, encouraging community contribution is one of the key things, and
the idea there is that innovation always happens elsewhere. If you only rely on your
10 or 15 or 100 employee engineers to develop technology, you’re not going to get
the benefit of the other thousands that are out there that might be willing to
participate in your program if the circumstances are appropriate. What are
appropriate circumstances? Have you set up the right cultural environment for the
community? Have you provided the right incentives for developers to participate
and get benefit from actually developing in that community?

Standards are another really important area. If you want to get technology out there
and have it adopted as a standard, having the source code available to people so
they can get access to it and use it, is a very good way to go. Again, you still need
to be able to interact with the community and invest the time and money to make
that community work; otherwise, it is not likely to happen. We’ve got a number of
projects that are out there today, in file sharing, and transfer of files over the
Internet. We want very much to make sure they stay open standards – and we’re
willing to make the code available to assist in that happening.

Generating revenue – now this is primarily with the community license, because
we reserve the right to charge people royalties for distributing products that
integrate our code. That is not something that you see with open source in terms of
distribution of the source code itself. The open source guys can charge for
distribution of binaries, but they primarily look to other means to generate revenue.
For example, the Red Hats of the world provide both support and professional
services intended to generate revenue. Whether that model is scalable remains to be
seen.

Capturing developer mind share is another important issue. Sun has a number of
platforms where we want to encourage developers to write applications. Having

 58

access to source code is very helpful to be able to debug programs and to write
better applications, because if you can actually see how the operating system
works, your applications can take advantage of that. So, we have a number of
programs to make technology available for that purpose.

Also, Governments – actually there is a lot of discussion right now about whether
various Governments are going to require that only open source be available. The
Government of Denmark has actually been looking at that. They’ve got Microsoft
terrified right now because they’re suggesting that maybe they should just only use
open source technologies for their operating systems, rather than the closed
environment that Microsoft sells. Well, not a great idea if you think about it. If you
only allow people with open source to sell to the Government, you are going to
have most of the proprietary systems that are around here today, not being used by
the Government. I mean, certainly we couldn’t do it, because Solaris is not open,
can’t be, at least not today. Microsoft could not do it. Same thing with HP and IBM
– although I imagine some of their systems can be delivered on Linux. But, its not
always a bad idea, Governments often require access to source, usually in escrow.
Sometimes it’s easier to just do an open source arrangement for them and make
sure they have access to it that way.

Goodwill is another possible goal- simply making the code available because you
are not using it. At Sun, and many companies like us, we have lots of projects.
Sometimes we have projects that are focusing on very similar things at the same
time and one will win and one won’t. So the one that wins goes off and becomes a
product someday. The people that worked on the one that didn’t are thinking, “I put
a few years into this thing and look what’s happened – maybe we should give it to
the world”. That might be the right thing to do in some circumstances, but there are
costs associated with doing that. There is a lot of hidden costs associated with
properly handing code off publicly, so you really have to weigh the benefit of
making it available for free, versus the costs associated with it. There is a lot of
code scrubbing that has to be done to be sure that it is suitable for public
consumption.

Posting Code

So what about the actual process of posting source code publicly? Once you make
the decision that you want to do it, how is it actually done? What should we be
concerned about?

From a public perspective, make sure the code is of reasonable quality and useful
to your target audience. You don’t want to throw your garbage in the street as it
were; it’s considered to be bad form. For the most part, if you just have a project
that died and you just want to get the code out there, to say “Gee what a nice thing
I did”, it probably won’t work. You also have to make sure there aren’t any
inappropriate comments in the code, because when a programmer’s up in the
middle of the night, irritated about something, casting aspersions on Bill Gates in

 59

code comments is not the thing you want to see out there the next day. So you go
and do research, do scripts that look for key words or peoples’ names, foul
language, what have you. You can also do a script to search for third party
copyright notices. If we didn’t realise we had some code from a third party, making
it publicly available suddenly makes it known that you did, and you have potential
liability. So it is good to make sure that the least you have done is a reasonable
search for third party stuff.

Programmers may or may not realise they have developed patentable inventions in
their code. Also, the code may read on patents you already have filed and have
issued that are sitting in your patent portfolio. So we need to take a look, check
with the patent database and look for anything that might be affected by publishing
the code. If anything is patentable, you have to decide if you want to file on it
before making it available to the public.

If you intend to encourage community development, you have to provide incentive
for people who are not into monetary rewards to hack the code and post their
contributions. It usually has more to with things like the personal satisfaction of
having provided a really cool piece of code and see others actually use it.

So you got the code out there, its clean, looks good, you have got a community
working and people are actually providing contributions back. What do you do
about that? If you went out under a Berkley style of license then if people are
providing code back there’s not a mechanism to dictate the license terms under
which you receive it. For example, the Apache foundation using a BSD style of
license also requires a contributor agreement for major contributions to their code
base. So if you want to provide code, you need to sign an agreement that says, “I
own the copyright, I wrote this myself, my employer does not have copyright under
my employee agreement, and if I know of any encumbrances in terms of other
intellectual property that might require a license, I will tell you so that you can
decide whether to take it or not”. This is a very key concern because if you allow
code to come in and you do not know where it came from you can’t be certain if
the full rights are there.

Posting under GPL

If you put code out under GPL, someone can take that code and make
modifications to it but it triggers an obligation to make their modifications
available under the same license. If you want to create a community under GPL
where people are going to provide code back, then it all has to be GPL code. So if
you have in mind to do something else in addition to GPL then you need to have
ownership in that technology because the owner of the copyrighted code has the
right to do what they wish with it. They still have the obligation to license under
GPL if the code was derived from GPL code, but they have the right to license it
under other license terms as well. Hackers often license the same technology under
a GPL and a proprietary license so they can charge for the proprietary version. If

 60

you have GPL stuff out there people are not too excited about going and getting it,
especially commercial entities, so you can say, “By the way, I can license you a
propriety version as well and it will only be $100,000, great!” That’s one way open
source developers make their money.

Employees

We’re actually working on a program that would allow for variations on our
employee agreements because we have probably fifty employees that are
contributing to Mozilla and other projects. We have a ton of other employees doing
Linux work and a variety of other things including Gnome.org. Those are all
projects sponsored by Sun in some way or another. We can sanction that, but we
also encourage our employees as individuals to participate in research programs,
because we think it’s a good thing to do. The difficulty is if I am in the server
group and I do web servers for Sun-iPlanet and I’m busy throwing stuff over the
wall to Apache, that’s probably a problem because if you read the employment
agreement even with the California labour code requirements there’s a conflict. So
what we’re looking at is providing in advance a waiver to that requirement for
employees who want to participate on a particular program. It would be for
whatever period of time that they want to do it. But it wouldn’t be for any open
source project there is. What we are grappling with is how to weave this process
into Sun’s conflict of interest policy.

Downloads

So downloads. This is where you bring open source code back in house. What are
the issues? Where did it come from? Did the people that contributed knowingly or
not knowingly provide code that was infringing others’ rights? That’s a hard thing
to know. You can do a contributor agreement and get some kind of commitment
that they had a right to license it.

Looking at who created the technology itself is helpful. If it is well known
developers who have been working in the community for a long time, it is likely
there would be a reasonable level of comfort that they have the right to provide the
code. Pride of authorship is important to these developers. If the product that you
actually put the technology into is critical to your business, and you are unable to
ship it due to an injunction, then you think twice about what technology goes in
and who wrote it. You don’t want to compound the problem by having the
potential for copyright claims that come in from code that was improperly
provided. I have seen through our own processes where a list of copyrights and a
license associated with a specific technology turned out not to cover all of the
included code. On further examination we found references to the Free Software
Foundation, which means GPL licensing terms. Under the circumstances, we
couldn’t use the code as planned. So a very careful examination of the technology
is really critical.

 61

Conclusions

What this all means to Sun, as a corporation is that there is a place for public
licensing. No question about it, we use it and encourage it, we support a lot of
programs, and we get a lot of benefit from it. You have to choose your license
wisely, whether you’re licensing out, or bringing technology in. You need to weigh
your liabilities. People think that it is cheaper to go and get code off the web and
use it in their products. Sometimes that’s not so because of your attached liabilities.
Also creating an open source development program to have the community
develop the code for you may seem a lot less expensive, but often it costs more to
do that, than it does to develop it yourself. You need to have other reasons to do the
open source, so that you get the benefit of going out there and bringing in
technology.

 62

Chapter 4

Open Source Software:
An Australian Perspective

PETER CJ JAMES

Partner, Allens Arthur Robinson

1. OVERVIEW

Open source licensing can result in enormous savings in programming costs,
shorten development time and assist in identifying and fixing security issues.
However, the success of an open source project depends on capturing the loyalty of
the programming community, which may require that particular forms of open
source licences are used – even when those licence terms do not work from a
commercial perspective.

That has led some open source projects (most recently, the Mono Project to clone
an open source version of Microsoft’s .NET development platform), to adopt a
level of commercial pragmatism – allowing large software companies and
embedded system manufacturers to develop their own closed-source derivatives of
the software to secure those companies’ involvement.

That is at odds with the ideal of the “copyleft” purists (who say that all software
which is derived from open source software should also be made available to all on
an open source basis), but is good news for the commercial future of open source.

The commonly used GNU licensing model does not adequately deal with issues
arising under Australian law. The self-replicating nature of the GNU model means
that the opportunity to redraft the licence to rectify these problems is constrained –
except by expanding the licence terms with additional exclusions and limitations of
liability. This leaves the supply chain for products which include GNU-licensed
software potentially exposed with liability under implied warranties (discussed in
section 5.2), liability in negligence (see section 6.2) and liability for loss of profits
and loss of data (see section 6.3).

This paper examines some of the practical issues involved in open source licensing
in Australia and what the ideals of open source have in common with business
reality in this country. With most developments in this field originating in the
USA, this paper also examines some of the difficulties under Australian law which
arise from using commonly available open source licenses.

 63

Watch your language

Before looking at the particulars of open source licensing – a cautionary note:
Whether advising a developer, distributor, user or service provider, a lawyer’s
enemy (or best friend, depending on which side in a dispute is being taken) is
imprecision in the expressions used in the industry. Words have a range of, often
conflicting, meanings depending on their use.

Included in Schedule 2 is a selected glossary of expressions used in open source
discussions and literature. Be careful with expressions like these, since industry
usage of the expressions varies greatly. Defining exactly what you mean in a
licence, website or software documentation is the best approach, to avoid any
ambiguity about usage of a word.

One example is “Freeware”, which many use to describe the freedom of rights of
use and distribution attaching to particular software, but not necessarily implying
the use is for no monetary charge – “free as in speech, not free beer”.107 Used this
way however, “Freeware” might still have conditions of use attached to it (for
example, an obligation to report and share improvements or to distribute the
software and derivative works on the same licence terms as the original code) and
therefore be something more restrictive than “public domain software”. However,
others use “Freeware” to describe no-charge software which, again, might not
necessarily mean that there are no licence restrictions applying to it, despite the
rights of use being for no charge.

Using industry jargon does not necessarily convey a precise meaning and can lead
to misuse of the software or dilution of legal rights based on confusion created by
the ambiguity. This was part of the motivation in the adoption of the expression
“open source” in the place of “freeware” (as discussed at section 2.2 below).

2. MIX AND MATCH IN OPEN SOURCE

2.1 The basics

Open source licensing might be touted as the brave free world of software development and
distribution but, at its heart, it still depends on the same principles of law as traditional
proprietary software licensing.

Ultimately, an open source product carries with it a licence – ie a contract setting
out the legally binding rights of the software user and the obligations of the user
and the licensor. Similarly, the principles of copyright law and patent law will
determine the enforceability of a person’s rights and obligations in relation to open

 64

107 A catch cry of FSF founder Richard Stallman, quoted in Robert W. Gomulkiewicz,
“How Copyleft uses Licence Rights to succeed in the Open Source Revolution and the
implications for Article 2B” (1999) 36 Hous. L. Rev. 179.

source software – in just the same way as for proprietary software. In the same way
as traditional licensing, it will be the traditional courts system (or if the licence
instrument requires, which is rare in open source licenses, an arbitration or
mediation process) that dictates the outcome of any disputes.

So what is the difference?

In traditional proprietary software licensing, it is only the machine readable or
executable version of the code which is made available to the user. The human
readable code in programming language (eg C, C++, shell, lisp, assembly, Perl,
Fortran, Python, tcl, Java and C#), which is required to enhance, maintain or
develop the software, remains undisclosed and the licensee acquires no rights to
use the source code.

Parts of the source code may be derived by reverse engineering from the object
code, but unless that is authorised by the owner of the software or Division 4A of
Part III of the Copyright Act 1968 (Cth),108 it will constitute a breach of copyright,
and possibly an infringement of patent rights (if there is one), a breach of
confidentiality (depending on the circumstances) or breach of licence conditions
for the software.

The process for reverse engineering109 is:

Source code
decompiler

Assembly code
disassembler

Object code

2.2 Open Source Definition

Bruce Perens wrote what the industry regards as the canonical principles defining
open source,110 now adopted by the Open Source Initiative. The principles are as
follows:

 65

108 These are rights of reproduction of licensed software for research and study of the ideas
behind the program, for back up purposes, to create independent interoperable products, to
correct errors where a commercial correction is not available or for security testing where
the test result is not available from another source.
109 The process of transition from machine readable object code to human readable source
code, and the issues in copyright surrounding this, are conveniently set out in Anne
Fitzgerald’s and Cristina Cifuentes’ article “Pegging out the boundaries of computer
software copyright: The Computer Programs Act and the Digital Agenda Bill” (in
Fitzgerald et al Going Digital 2000, Prospect Media). It is not proposed to redescribe those
principles here.
110www.opensource.org/docs/definition_plain.html

Introduction

Open source doesn't just mean access to the source code. The distribution terms of
open-source software must comply with the following criteria:

1. Free Redistribution

The license shall not restrict any party from selling or giving away the software as
a component of an aggregate software distribution containing programs from
several different sources. The license shall not require a royalty or other fee for
such sale.

2. Source Code

The program must include source code, and must allow distribution in source code
as well as compiled form. Where some form of a product is not distributed with
source code, there must be a well-publicized means of obtaining the source code
for no more than a reasonable reproduction cost-preferably, downloading via the
Internet without charge. The source code must be the preferred form in which a
programmer would modify the program. Deliberately obfuscated source code is
not allowed. Intermediate forms such as the output of a preprocessor or translator
are not allowed.

3. Derived Works

The license must allow modifications and derived works, and must allow them to
be distributed under the same terms as the license of the original software.

4. Integrity of The Author’s Source Code

The license may restrict source-code from being distributed in modified form only
if the license allows the distribution of “patch files” with the source code for the
purpose of modifying the program at build time. The license must explicitly permit
distribution of software built from modified source code. The license may require
derived works to carry a different name or version number from the original
software.

5. No Discrimination Against Persons or Groups

The license must not discriminate against any person or group of persons.

6. No Discrimination Against Fields of Endeavor

The license must not restrict anyone from making use of the program in a specific
field of endeavor. For example, it may not restrict the program from being used in
a business, or from being used for genetic research.

 66

7. Distribution of License

The rights attached to the program must apply to all to whom the program is
redistributed without the need for execution of an additional license by those
parties.

8. License Must Not Be Specific to a Product

The rights attached to the program must not depend on the program's being part
of a particular software distribution. If the program is extracted from that
distribution and used or distributed within the terms of the program’s license, all
parties to whom the program is redistributed should have the same rights as those
that are granted in conjunction with the original software distribution.

9. The License Must Not Restrict Other Software

The license must not place restrictions on other software that is distributed along
with the licensed software. For example, the license must not insist that all other
programs distributed on the same medium must be open-source software.

Of course, these principles are not legally binding and not all licences of software
supplied with the source code implement the entire package of these principles.
However, they are a useful benchmark and one used by developers to assess
whether a product is “true” open source or not.

2.3 Rights in Open Source licences

Allowing users to have a copy of the source code does not, by itself, make clear
what rights the licensee has to use that code – or what rights the licensee has to use,
modify or distribute the software generally. These rights are defined in the licence
terms. In the context of open source licensing (in the broad sense – not necessarily
limited to the scope of the OSI criteria mentioned in section 2.2), the rights that
differ from traditional proprietary licensing most commonly fall within the
following categories:

• Rights of access to source code (ie the licensee in open source gets the source
code);

• Rights of use of the source code. That might be unrestricted or limited to particular
purposes (eg for ensuring compatibility of the software with other products; for
security checking only; for maintenance; for enhancement and modification; for
creation of derivative works or incorporation into another program);

• Rights of copying (eg unrestricted; restricted to the licensed entity; restricted to a
particular purpose);

• Rights of distribution eg unrestricted; restricted to related companies or associates;
restricted as to form (eg distribute executable code only); restricted as to the
conditions to be used when re-supplying or distributing.

• Rights concerning product characteristics (ie warranties) and in relation to
rectification of errors (typically open source products attempt to be on “as is”

 67

terms, with no warranty of compliance to a specification or warranty about the
absence of viruses, back doors, time bombs etc). This characteristic might not be
so different from many proprietary licences, but is universal in open source.

An illustration of how the mix of rights and obligations might be formulated – and
the profile of licences from Open Source, through ‘Public Source’, to the
traditional proprietary model is set out in Table 1: “The Open Source Continuum”.

2.4 When too much choice is barely enough

Tailoring the mix of rights to suit strategic and commercial objectives (as well as
the need to fit with companies’ licensing policies and preferred wording for
particular clauses) has spawned an enormous number of open source licences.
Often licenses have been created to fill gaps or fix problems identified in earlier
attempts at a definitive open source licence.

The Open Source Initiative lists 32 different licences that have met their criteria for
use of the OSI certification mark. The Free Software Foundation (ie the promoter
of GNU) analyses more than 50 open source licences and evaluates them against
their views of the “copyleft” ideal (Schedule 1 of this paper has the web references
for these).

Taking Red Hat Linux 7.1 (the current version is 7.3) as an example, it has been
calculated111 that there are more than 17 different licence types (as well as public
domain software) governing different parts of the source code. The break down on
licenses is:

55% GNU’s General Public Licence (GPL)
10% GNU’s Lesser General Public Licence (LGPL)
9.4% MIT open source licence (MIT)
7.5% Berkeley Software Distribution licence (BSD)
6.8% Mozilla Public Licence (MPL)

Because of the heavy use of the GNU terms (either the Public Licence (55%) or
Lesser Public Licence (10%)) and because the GNU terms nicely illustrate some of
the features and problems of open source licensing, this paper uses that document
for discussion.

 68

111 David A. Wheeler, “More than a Gigabuck: Estimating GNU/Linux’s size” at
http://www.dwheeler.com/sloc/redhat71-v1/redhat71sloc.html.

http://www.dwheeler.com/sloc/redhat71-v1/redhat71sloc.html

Table 1: Open Source Continuum

Copy “left”

All rights reserved

X11, BSD Open Source

(eg GNU General Public
Licence)

 Public Source

Source & executable Source & executable Source & executable

Can modify code Can modify code No code modification

Can copy Can copy Backup copy

Can distribute Can distribute No distribution

Not self-replicating Self replicating

No warranty* No warranty* Limited warranty*

3. THE SELF-REPLICATION OBLIGATION

3.1 The “copyleft” requirement – derivative works

The reference in Table 1 to “self replication” describes the provision common in
open source licences (and in particular in the GNU General Public Licence) which
requires distribution of the software and any derivative works on terms compatible
with the licence of the original open source program. Some detractors of the GNU
model call this a “viral obligation”, whereas others prefer to describe the copyleft
requirement as the open source “heritage”.

In the GNU General Public Licence (current version 2, June 1991), the copyleft
obligation is expressed as follows:

You must cause any work that you distribute or publish, that in whole or in part
contains or is derived from the Program or any part thereof, to be licensed as a whole
at no charge to all third parties under the terms of this License [emphasis added]

 69

These requirements apply to the modified work as a whole. Identifiable sections of
that work are not derived from the Program, and can be reasonably considered
independent and separate works in themselves, then this License, and its terms, do not
apply to those sections when you distribute them as separate works. But when you
distribute the same sections as part of a whole which is a work based on the Program,
the distribution of the whole must be on the terms of this License, whose permissions
for other licensees extend to the entire whole, and thus to each and every part
regardless of who wrote it.

The apparent breadth (and imprecise drafting) of these provisions is frightening to
anyone who might not wish to open their own software products to a no-charge
open source model of distribution. It is primarily this concern that led to the use of
the X11 licence for the class libraries in the Mono Project (discussed earlier in
paragraph 4.2). Interestingly, even the creators of the GPL recognised this problem
and created the GNU Lesser General Public License in response.

The obligation to apply the same licence conditions to derivative works is binding
regardless of the size, importance or value of the original open source code relative
to the derivative work. This represents a significant risk to a software developer
who uses source code distributed under this model, unless the developer is
indifferent to the derivative work having to be licensed on the same conditions –
meaning that the entire source code of the derivative work would need to be made
available to licensees on the same open source licence conditions.

The second paragraph quoted above (clarifying that identifiably separate software
is not covered) introduces the need for well designed and documented processes for
code development, so that the origins of those sections of a program which are not
derived from the open source software can be readily distinguished from the open
source “infected” portions.

This also means that a derivative work may need to have two or more separate
licences – one for the open source portion of the software and another for the
separately identifiable non-derived portions. Those non-derived portions might be
made available on open source terms differing in some respect from the terms
governing the “infected” portions – or on proprietary licence terms.

This can be a compliance and marketing headache for software intended for
commercial application, requiring an explanation of which licence applies to which
portions; click through or click wrap acceptance or execution of two or more
licences for one product; and different maintenance and warranty obligations
applying to the different portions.

The practical risk of a slip up in compliance with such a regimen is that a user or
competitor may be able to insist on disclosure of the source code for the non-

 70

derived portion (ie the independently derived code), where its independence cannot
be demonstrated.112

A compliance failure might also mean that the licence of the derivative work does
not correctly describe the rights of the user (ie it is less generous than required by
the open source original licence). That might constitute misleading or deceptive
conduct under section 52 of the Trade Practices Act 1974 (Cth) and equivalent
provisions in the State and Territory Fair Trading Acts.

3.2 Open source impacts for IP policies

Another important aspect of the GNU strategy to overcome restrictions on use of
software and its derivatives is to ensure that patents are not used to thwart the
intentions of the licence:

… any free program is threatened constantly by software patents. We wish to avoid
the danger that redistributors of a free program will individually obtain patent
licenses, in effect making the program proprietary. To prevent this, we have made it
clear that any patent must be licensed for everyone's free use or not licensed at all.113

This is then reinforced by condition 7 of the GPL which makes the obligations of
the GPL paramount over patent rights, namely that such rights must be exercised in
a manner consistent with the GNU licence.

4. THE OPEN SOURCE DECISION

4.1 Benefits of the developer community

Despite the shortcomings of the GNU General Public Licence (GPL), it has
enormous acceptance in the developer community. That acceptance (and the depth
of conviction associated with it) must not be underestimated in designing an open
source project, where the willing participation of that community (and their gratis
contribution of coding and improvements) might determine the success or
otherwise of the strategy. Not only will such contributions massively reduce
development costs and time to market, but they can make the product substantially
more secure and more useable. Sometimes those contributions are the product.

112 Such an outcome might be sought, for example, by applying the principle of contracts
(ie the open source licence of the original portions of code) made for the benefit of third
parties (ie the user of the derivative work). In the States of Queensland and Western
Australia, this is embodied in statute (section 55 of the Property Law Act 1974 (Qld) and
section 11 of the Property Law Act 1969 (WA) applied in Westralian Farmers Co-operative
v. Southern Meat Packers [1981] WAR 241), but in other Australian States is derived from
common law principles (following the leading case of Trident v. McNiece (1988) 165 CLR
107).

 71

113 Preamble to the GNU General Public Licence.

David Wheeler’s work114 in relation to Red Hat Linux 7.1 illustrates this. He
calculates that there are more than 30 million source lines of code (SLOC) in
version 7.1, compared to 17 million lines in version 6.2. That represents 8000
person years of programming, worth more than US$1 billion. As already
mentioned, more than 65% of the source code is licensed on the basis of the GNU
General Public Licence or Lesser General Public Licence.

The support of the open source developer community is strongest when the
development task is intellectually interesting or new (or if it would be a blow to
Microsoft), but may not be so strong for more mundane programs, where the
amount of coding needed is disproportionate the perceived benefit for the
developer or where it is thought that the outcome will merely benefit a commercial
enterprise (rather than the enhancement of a common good).

For complex software where the cost of development is high, the use of the open
source model may discourage development, since the licence terms may make it
impractical or commercially difficult to recoup the development cost by licensing
the improved (ie derivative) program.

4.2 Balancing commercial interests

An example of commercial pragmatism in open source development is the Mono
Project115 initiated by Ximian Inc in July 2001. Just as Linux sought to clone, in
open source, the Unix operating system, the Mono Project is designed to create an
open source clone of Microsoft’s .NET development platform:

The .NET development platform is a very rich, powerful, and well-designed platform
that would help improve the free software development platform. Just like the GNU
project began to clone Unix sixteen years ago, we will be cloning the .NET
development platform because it is a great platform to build on.116

The runtime components of Mono remain under the Lesser General Public Licence
and the programming language (C#) compiler is licensed on the GNU General
Public licence terms.

Interestingly, however, the Mono Project has chosen not to use the GNU General
Public License for its class libraries, but instead has chosen MIT’s X11 license.
That decision was made because of the difficulty of securing the involvement of
large commercial enterprises in the project if forced to include their work on the
same GPL terms.

114 op cit, supra note 5.
115 www.go-mono.com/rationale.html. This paper does not debate Microsoft’s .NET
strategy (or its merits or otherwise) compared with products of Sun Microsystems, such as
J2EE.

 72

116 Ibid.

http://www.opensource.org/licenses/mit-license.html

This was a particular issue for producers of software embedded in microchips and
devices (like TV set top boxes), where compliance with the GPL has practical
difficulties (how can a user be given the ability to change the code embedded in an
electronic device, where there is no user interface for this?) as well as being
commercially unpalatable.

The principal difference stemming from use of the X11 licence is that commercial
contributors who use the class libraries to create improvements or derivative works
will not have to make their final source code available (as they would under the
GPL).

The decision was rationalised by Miguel de Icaza, Ximian’s co-founder and chief
technologist for the Mono Project, in the following terms:

So this doesn’t prohibit Intel from making an optimized Intel-only version (of Mono)
that they wouldn’t release to the world – that is a downside. It does worry me a bit, but
the advantage is getting large contributors to the project.117

Such pragmatism, and its impacts for continued support of the development
community, must be carefully thought through to make sure it does not cost the
support of the development community.118

Licensors contemplating open source also will need to analyse the implications on
direct licensing revenue (and whether other revenue models are available, for
example in providing associated services such as technical support and
implementation services) and the impacts for their strategic and competitive
position. The trade off might be between the commercial strengths of different
intellectual property assets – the source code, on the one hand, and strength of
brand for service provision, on the other.

Open source might lead to a product becoming widely accepted and a de facto
standard, and the benefits of that in a particular case might be enormous for
services or other products of the licensor.

4.3 Whose source is it?

For a software licensor, the analysis of whether to use an open source licence
should include some analysis of the components of the software and their

117 Quoted in Wired at http://www.wired.com/news/technology/0,1282,50037,00.html.
118 An interesting example of this is where AT&T in the early 1990s sought to better profit
from its UNIX program, increasing licence fees and litigating in respect of the residual
UNIX components used in the Berkeley Software Distribution (BSD) version of UNIX.
The litigation was settled, but the BSD development community replaced the AT&T code –
isolated AT&T – to solve the problem. For the interesting history, see Andrew Leonard’s
“BSD Unix: Power to the people from the code”

 73
www.salon.com/tech/fsp/2000/05/16/chapter_2_part_one/print.html

respective origins. One might think it should go without saying, but it is necessary
to be certain, before disclosing the source code, that:

• The licensor’s own staff developed the source code within the scope of their
employment;

• Any code developed by consultants to the licensor was done on terms that either
expressly passed ownership (ie all intellectual property rights) to the licensor or
which granted the licensor rights to distribute the source code in the manner
contemplated;

• Any code which is licensed to the licensor was acquired under license terms that
permit distribution of the source code in the manner contemplated (and all
conditions of those licenses are complied with, eg requirements about notices and
labelling); and

• No commitments have been made to a third party (eg existing customers) that
source code would not be disclosed or that it would be kept confidential.

4.4 The user’s choice

For a user, it is not only the initial cost of acquisition that is relevant, but also the
cost of ownership – impacted by maintenance costs, system administration time
and downtime risks and costs. Depending on the software, the open source model
might increase or decrease costs of ownership.

Even where many community developers contribute to the enhancement of open
source software, users will need to carefully examine the origins of improvements
made and the quality of the improvements to determine their suitability and effect
for the user’s systems. That involves maintaining programming skills, time and
cost.

If it transpires that a person contributing source code has infringed the intellectual
property rights of someone else (ie the source code was pirated), a commercial
enterprise using the end product has legal exposure to the true owner of intellectual
property rights. That the open source licence conditions expressly disclaim any
warranty (including a warranty that the software does not infringe anyone’s
intellectual property rights) is only part of the problem, since pursuing the
developer for the infringement in most cases would be financially (if not legally)
futile.

Many who argue the benefits of community software development also argue that
the model will result in more robust or more secure software. That is not
necessarily so, since it assumes that those accessing the code will use the code only
for improvement – and not to find security holes or to write tools for use in hacking
systems which are using the software. In business, it cannot be assumed that people
are universally well motivated and not evil or mischievous.

Some argue that code and system crackers have not found it difficult to reverse
engineer source code for closed source products (or to write viruses and hacking
 74

tools using published application programming interfaces) and that a security
strategy based on non-disclosure of source code is flawed.

Much of the debate around security is centred around bug fixes, rather than the
security implications of underlying software architecture; specifically the role of
open source in relation to analysis of the security of the architecture and user
choices about security and access.

The US National Security Agency (NSA) has done extensive work in relation to
Linux, arguing that open source for operating systems plays a critical role in
relation to security.119 The resulting security enhanced Linux (or SE Linux) is
designed to allow the operating system to serve the security choices of the user,
rather than having to rely on the security decisions of a particular software vendor,
allowing the user to dictate mandatory access controls. However, SE Linux does
not embody a suite of other security features such as security audit or system
assurance, which nevertheless are important elements for the user’s security
strategy. The NSA acknowledges that a complete security solution still requires
considerable work to add that functionality before SE Linux will be a “Trusted
Operating System” suitable for meeting a particular government or corporate user’s
requirements.120

Whatever the security virtues of open source, it requires just as much vigilance of
system administrators in tracking known bugs and implementing available fixes to
minimise the risks of unauthorised system access or attacks. Recent analysis by
Mi2g suggests that Linux based web server systems are increasingly being targeted
by system crackers, with a 27% increase in successful system attacks in the first 6
months of 2002, with the success partly because of system administration issues.121
Whatever the reality about security advantages of open source software, it may be
completely inappropriate for a highly security sensitive user to use open source. In
some markets the perception of such a security risk (regardless of reality) may be
sufficient reason to exclude use of open source software for critical systems.
However, there are many examples of open source software which is so widely
used that it becomes mainstream and thoroughly acceptable for commercial use.

119 See the 2 January 2001 press release at www.nsa.gov/releases/selinux_01022001.html
and information about SE Linux at www.nsa.gov/selinux/index.html.
120 See response #19 at www.nsa.gov/selinux/faq.html.
121 Mi2g report of 11 July 2002 at http://mi2g.com/. Press report at

 75
http://www.zdnet.com.au/newstech/os/story/0,2000024997,20266696,00.htm

http://mi2g.com/

5. NO WARRANTY PROVISIONS

5.1 “As is” conditions

The GNU General Public Licence (current version 2 June 1991) and most other
open source licenses offer the software on an “as is” basis, with a clause stating
that there is no warranty of the software.

In the GNU General Public Licence, that is expressed as follows:

Because the program is licensed free of charge, there is no warranty for the program,
to the extent permitted by applicable law. Except when otherwise stated in writing
the copyright holders and/or other parties provide the program “as is” without
warranty of any kind, either expressed or implied, including, but not limited to, the
implied warranties of merchantability and fitness for a particular purpose. The entire
risk as to the quality and performance of the program is with you. Should the
program prove defective, you assume the cost of all necessary servicing, repair or
correction.

As discussed below, there may be some real problems which arise under Australian
law in the scope of protection such a clause offers a licensor. That is not peculiar to
open source licences, but is such a fundamental feature of open source
development that it is worthy of mention.

5.2 Excluding implied warranties and conditions

As discussed in this section, an exclusion of implied conditions and warranties may
not be effective in Australia, even when the governing law of the open source
licence is a State of the USA or some other place. The application of the implied
conditions involves some complexity where the supply is for no monetary charge,
but in some cases the implied conditions and warranties still apply.

In Australia, there are conditions implied into contracts of supply by the Trade
Practices Act 1974 (Cth) (TPA) and State and Territory Sale of Goods legislation.
The absence of a written contract or express terms will not necessarily prevent a
finding that a contract does exist, into which the conditions and warranties may be
implied.

The conditions implied by the TPA (sections 66 to 74) are:

• In relation to goods – warranty as to title; warranty of quiet enjoyment; warranty
that the goods are free from encumbrances; a condition that supplies by
description will comply with the description; a condition that the goods will be of
merchantable quality; a condition that the goods will be fit for any purpose the
consumer expressly or impliedly makes known to the supplier; and a condition
that goods supplied by reference to a sample will correspond to the sample.

 76

• In relation to services – a condition that the services will be rendered with due care
and skill and that materials supplied in connection with the services will be
reasonably fit for purpose; a condition that the services will be reasonably fit for
any purpose the consumer expressly or impliedly makes known to the supplier
(unless it is unreasonable for the consumer to rely on the supplier’s skill or
judgement).

There is some debate in Australia about whether software (by itself) constitutes
goods or services (and therefore which of these sets of implied warranties are
relevant). A sale of a complete computer system (hardware and software) is
regarded as a sale of goods,122 but there is no settled authority about a mere licence
of software. If software is distributed over the internet, without the sale of a
physical medium of supply, the supply is merely a grant of rights and does not have
any of the usual characteristics of a supply of goods. In such a case, it might be
argued that a pure supply of software is a supply of services, rather than a supply of
goods – avoiding, in particular, the implied warranty of merchantability.

Of course, it is another issue to determine what a warranty of merchantability or
fitness for purpose might mean in practice for a supply of software (say a session
tracking tool) that is intended only for further development and testing and
integration into a much larger whole (eg the Mono Project), which will then also be
tested and improved before being ready for commercial use.

In other words, a single developer participating in an open source community
development of a product like Mono or Linux, has little practical exposure or risk
from an implied warranty of merchantability or fitness for purpose.

However, once the product is in a form ready for commercial implementation and
use, a provider who licences the compilation of software contributed on this basis
by hundreds of developers, would have good reason to consider the implications of
an implied warranty of merchantability and fitness for purpose – and to consider
how liability in relation to those warranties might be excluded or limited in a way
that is legally effective.

The implied TPA conditions cannot be excluded by a provision in a contract123 and
any attempt to do so is void (although liability can be limited to resupply or the
cost of resupply in some circumstances, discussed shortly). A provision stipulating
a governing law of a place outside Australia, will not prevent the conditions
implied by the TPA applying.124

122 ASX Operations Pty Ltd v Pont Data Australia Pty Ltd (No 1) (1990) 27 FCR 460. Toby
Constructions Products Pty Ltd v Computa Bar (Sales) Pty Ltd [1983] 2 NSWLR 48. St
Albans City & District Council v International Computers Ltd [1996] 4 All ER 481 (CA).
123 Refer to section 68 Trade Practices Act 1974 (Cth).

 77

124 Section 67 Trade Practices Act 1974 (Cth).

The TPA conditions apply to supplies to consumers. This is defined in the Act125 so
that a supply will be to a consumer only if:

• The price of the goods or services (the amount paid or payable) does not exceed
AUS$40,000; or

• Where the price is greater than AUS$40,000 – if the goods or services are “of a
kind ordinarily acquired for personal, domestic or household use or consumption”.

A great deal of open source software is supplied for no charge. The TPA states that
where services are acquired (defined to include “accepted”) other than by way of
purchase, then the price for the purposes of the $40,000 threshold can be
determined by the available price for purchase or, if not available for purchase, the
value of the services. If the value is zero (a give away), then the supply is for less
than the $40,000 threshold.

It is not necessary that the software be sold or purchased, as long as it is supplied or
accepted.126 However, the TPA conditions and warranties will be implied only
where the supply is “in trade or commerce” – words which the courts have given a
wide and generous meaning.127 Where software is supplied by way of gift, not sale,
this requirement nevertheless would be satisfied if the software supply is part of a
commercial dealing or if the supply is connected (even indirectly) with advancing
or protecting the commercial interests of the supplier.128 That may not be too
difficult to satisfy, particularly where a licence is associated with a commercial
supply of ancillary services (like software support or documentation).

Taking the GPL Public Licence (GPL) provision as an example, it does state that
the exclusion of warranties in the first sentence of the clause (set out above in
section 5.1) is made to the extent permitted by applicable law, but that override
(even assuming it is effective to prevent the first sentence being void) does not
necessarily apply to the remainder of the clause. It is possible that the entire
exclusion provision in the GNU General Public Licence will be rendered void since
there is no provision allowing invalid parts of that clause to be severed from the
rest. Red Hat’s licence for Red Hat Linux version 7.3 recognises this issue.129

The Trade Practices Act allows suppliers to limit their obligations under the
implied conditions to resupply or the cost of resupply,130 but that is subject to an
overriding test of whether it is fair and reasonable to allow liability to be limited in
this way. In any case, the GNU General Public Licence does not purport to limit
liability in this way.

125 Section 4B.
126 Clarke v New Concept Import Services (1981) ATPR 40-264, at 43,348 per Davies J.
127 For example, Deane J in Re Ku-ring-gai Co-operative Building Society (No. 12) (1978)
36 FLR 134 at 167.
128 Fasold v Roberts (1997) 70 FLR 489.
129 www.redhat.com/licenses

 78

130 Section 68A.

Also, because its terms require that any distribution of the software (or derivative
works) be on the same terms, distributors of GNU licensed software face
difficulties in correcting these problems – except by expanding the licence terms
with additional exclusions and limitations of liability. There is an argument that
such attempts are incompatible with the original GNU conditions and
unenforceable, but that point does not seem to have been taken up by anyone.

6. EXCLUDING LIABILITY OF AN OPEN SOURCE SOFTWARE SUPPLIER

6.1 The GNU General Public Licence

The GNU General Public Licence (current version 2, June 1991) attempts to limit
liability of the software supplier in the following way:

In no event unless required by applicable law or agreed to in writing will any
copyright holder, or any other party who may modify and/or redistribute the
program as permitted above, be liable to you for damages, including any general,
special, incidental or consequential damages arising out of the use or inability to use
the program (including but not limited to loss of data or data being rendered
inaccurate or losses sustained by you or third parties or a failure of the program to
operate with any other programs), even if such holder or other party has been
advised of the possibility of such damages.

For the reasons discussed below, it would be far better for the licensor to have an
exclusion clause more broadly and unambiguously drafted, and which takes
account of the laws applying in Australia and the limitations to liability permitted
under Australian law.

Of course, with the self replicating nature of the GNU licensing model, the
opportunity to redraft the licence to rectify these problems is severely constrained –
except by expanding the licence terms with additional exclusions and limitations of
liability. This leaves those in the supply chain potentially exposed with liability
under implied warranties (discussed above in section 5.2), liability in negligence
(see section 6.2 below) and liability for loss of profits and loss of revenue (see
section 6.3 below).

Also, a disclaimer clause by itself will not erase liability of a supplier of open
source software for misleading and deceptive conduct under the Australian Trade
Practices Act 1974 (Cth) (discussed in section 6.4 below), but there is not much
that the licence conditions could do about that.

6.2 Exclusion clauses and Australian courts

Australian courts will give an exclusion clause its natural and ordinary meaning
but, if there is any ambiguity, it will be construed against the person seeking to rely

 79

on the clause.131 The courts look at the provision as a whole and, if the exclusion
attempts to limit liability for the very purpose of the contract, it will need to be
clearly and unambiguously drafted to survive challenge.

Where there is ambiguity, courts will read the provision narrowly (ie less
protection for the supplier of the software), including if a wider reading would be
irrational or unjust132 or conflict with another provision in the licence.133

If liability for negligence is not expressly excluded, the courts may read down the
exclusion clause so that liability for negligence is not excluded.134 It is best
therefore to specifically exclude liability for negligence. There is a real risk that the
GNU General Public License does not exclude liability for negligence of the
licensor.

Anyone using software licensed under the GPL to create derivative software also
would be obliged to use the GPL for the whole derivative work, and therefore may
be exposed to damages for negligence in relation to their work.

6.3 Consequential losses

The law in Australia about clauses which attempt to exclude liability for
consequential loss is complex, derived from various court decisions in Australian
and the UK. A detailed review of that case law is beyond the scope of this paper,
but in summary:

• Losses which flow directly from a breach of warranty or obligation are not
“consequential losses” or “indirect losses”;135

• Courts have been willing to generously define direct losses, to include things like
loss of revenue, loss of profits,136 and the cost of labour and materials needed to
remedy a breach;

• An exclusion of “consequential losses (including loss of profits or data)” can be
read narrowly by a court so that liability for loss of profits or data is excluded only

131 The leading case is Darlington Futures v Delco Australia (1986) 161 CLR 500,
endorsed in Nissho Iwai Australia v Malaysian International Shipping (1989) 167 CLR 219
and applied in Kamil Export v NPL (1996) 1 VR 538.
132 Carlingford Australia v EZ Industries (1988) VR 349.
133 Shoard v Palmer (1989) 98 FLR 402.
134 Bright v Sampson and Duncan (1985) 1 NSWLR 246 held that and exclusion of “all
liability” or “liability for any loss” did not exclude liability for negligence, but additional
words of “whatever its cause” would have been sufficient. In GL Nederland (Asia) v
Expertise Events (BC9901003, 16 March 1999), an exclusion of “liability whatsover for
damages” was sufficient to exclude liability for negligence, even though negligence was not
specifically mentioned.
135 Croudace Construction v Cawoods Concrete Products [1979] 2 Lloyds Rep 55 (Court of
Appeal).

 80

136 Deepak Fertilisers and Petrochemical v Davey McKee (London) [1988] CILL 1448
(Court of Appeal).

where it is a consequential loss.137 In other words, if the loss of profits or data
results directly and naturally from the breach, then an exclusion in that form might
not prevent a claim succeeding.

Clauses which seek to exclude liability for losses of revenue, profits, data and
business opportunities must therefore be very carefully and particularly drafted.

The GNU General Public licence (and a great many traditional proprietary software
licences for that matter) does not adequately exclude liability for loss of revenue or
profits. Also, there is a risk that the exclusion for loss of data will be read to apply
only when that is a consequential loss and not when the loss of data is a direct and
natural result of the breach (for example, a breach of an implied condition or
warranty).

6.4 Misleading or deceptive conduct

Section 52 of the Trade Practices Act 1974 (Cth) prohibits a corporation in trade or
commerce from engaging in conduct that is misleading or deceptive or likely to
mislead or deceive. Similar prohibitions existing in State laws.

The prohibition has been applied in an enormous range of circumstances including
pre-contractual negotiations,138 advertising or promotional material, labelling and
“small print” cases.139 It can apply when there is silence in circumstances where
relevant facts should have been revealed.140

If an exclusion clause lessens the misleading nature of what has gone before (eg by
correcting some previous misleading conduct or statement), it might have some
effect to lessen liability.141 In most instances, however, this will not be the case and
the contractual exclusion of liability will be disregarded in determining liability.142

7. OTHER THINGS THE GNU GENERAL PUBLIC LICENCE DOES NOT DO

7.1 Services related to software supply

There are some things the GNU General Public Licence (and many other open
source licences) does not seek to do. For example, there is no provision in the GPL

137 Pegler v Wang [2000] BCL 218.
138 eg Bevanere v Libidineuse 59 ALR 334. Discussed in Terry, “Consumer Protection for
Business Interests: The application of section 52 of the Trade Practices Act to commercial
negotiations” (1987) 10 UNSWLJ 260.
139 eg TPC v Optus Communications (1996) ATPR 42-478 and Britt Alcroft (Thomas) LLC
v Miller [2000] FCA 699.
140 eg Henjo Investments v Collins Marrickville (1988) 79 ALR 83.
141 Benlist v Olivetti Australia (1990) ATPR 41-043.

 81

142 Clarke Equipment v Covcat (1987) 71 ALR 367.

for the supply of services ancillary to supply of the software (such as pre-supply
assessment of client needs; installation and integration services; training; post
supply support; and on-going maintenance services).

For a commercial supplier of software (or a service provider for whom the software
supply is ancillary), these things may be the main source of revenue for a
transaction and would need to be supplied under a separate services or support
agreement.

7.2 Missing contract provisions

There are many contractual provisions which a licensor or user may wish to
include in a software licence used in Australia, but which the GNU General Public
Licence (and others like it) do not include. For example, there are no clauses:

• Applying principles of proportionate liability where a user is partly responsible for
a loss suffered (in response to the decision in Astley v Austrust);143

• Setting out the governing law of the licence and dealing with the parties’
submission to the relevant court’s jurisdiction;

• Applying non-litigation dispute resolution processes (such as mediation or
arbitration);

• Allowing provisions which are unenforceable to be severed or read down without
affecting other provisions in the licence;

• Regulating assignment of the licence;
• Dealing with confidentiality of information exchanged in the context of the

transaction;
• Dealing with costs and taxes (including GST);
• Dealing with insolvency or termination;
• Stipulating the licence as the entire agreement of the parties; or
• Other contractual “boiler plate” clauses to aid interpretation and enforcement.

The absence of some of these things is a function of the expectation that the licence
will not be used in the context of a commercial transaction or involve the payment
of any fee or other consideration. However, that will not always be the case and the
licence (without the addition of such provisions) would not be appropriate in a
business context.

 82

143 (1999) 197 CLR 1 (4 March 1999). Statutory reforms have been made in response to this
decision to ensure that a claim for a breach of contractual duty that also is a breach of a
tortious duty will nevertheless be subject to apportionment for contributory loss: see
definitions of “wrong” or “fault” in section 14 Law Reform (Miscellaneous Provisions) Act
1955 (ACT), section 15 Law Reform (Miscellaneous Provisions) Act 1956 (NT), section 8
Law Reform (Miscellaneous Provisions) Act 1965 (NSW) and Statutory Duties
(Contributory Negligence) Act 1945 (NSW), section 5 Law Reform Act 1995 (Qld), section
25 Wrongs Act 1958 (Vic), section 2 Wrongs Act 1954 (Tas) and section 3 Law Reform
(contributory Negligence and apportionment of liability) Act 2001.

Other things in this list are just as relevant in non-commercial simple licensing and
their omission could prove detrimental to reliance on the document and its
enforcement.

8. OTHER ISSUES IN OPEN SOURCE LICENSING

There are a number of issues in open source licensing which are unresolved, but
are not peculiar to Australia. This paper does not attempt to deal with them, but
they are mentioned here for reference:

1. Role of the open source project manager
There is usually not any particular clarity about the legal position of an
organisation which co-ordinates the programming efforts and management of
results of a community effort in open source development.

2. Enforcement of copyright and licenses
When a compilation of software with hundreds of authors exists, there are some
difficult issues about whether there is a compilation copyright held by the project
manager (ie independent of the underlying copyrights in the individual programs)
and who would have standing to enforce the copyright in the compilation. Also,
there are difficult procedural issues about how a large number of copyright owners
would be joined in an infringement action or be served notice of the
proceedings.144

There are a great many difficulties about what remedies would be appropriate also,
given that (i) there are multiple contributions to the total work of differing size,
functionality and relative importance; and (ii) contributors have not required
payment or royalties for their work.

3. Making licences binding
Licences of software in open source projects are rarely signed by a licensee – the
software is transmitted via the internet with notations about the licence terms
under which it is contributed. The way in which that is done varies widely and it is
not necessarily the case that the software can be accessed only after the user has
accepted the terms of the relevant license in a formal “click through” process.145

That raises doubts about whether the licence terms will be binding at all. It does not
necessarily help that the relevant licence terms contemplate a click through method
of acceptance (as does the GNU General Public Licence), if there is no
implementation of that method of acceptance before the software can be
downloaded.146

144 Discussed in Shawn W. Potter “Opening up to Open Source”, 2000, 6 Rich. J.L. & Tech.
24. Some of these issues are mentioned in Paul B. Lambert “Copyleft, Copyright and
Software IPRS: Is Contract still King?”, E.I.P.R 2001, 23(4), 165-171.
145 Like the “I agree” mechanism accepted by the court in the Hotmail Corporation v
Money Pie case C98-20064 (N.D Cal, 20 April 1998).

 83

146 Refer to the factors the court took account of in Rudder v Microsoft [1999] O.J. No 2778
(Ontario SC, 8 October 1999).

9. CONCLUSIONS

The expression “buyer beware” requires a broader application in the open source
model: not only does the product itself need to be considered against that principle,
but a user also needs to consider:

• The implications for the on-going costs of ownership of the software (in view of
the availability of support services and the need to vet improvements offered by
community developers);

• The implications for security of the systems on which the software will be used
(particularly whether community access to the source code might allow security
flaws to be found and wrongfully exploited, just as much as that knowledge might
instead be used for common good) – as well as how that issue might be perceived
(regardless of reality) by stakeholders and investors; and

• Implications for the user’s strategies for acquiring and benefiting from intellectual
property – in particular, whether the demands of the open source licence might
have a deleterious impact for patent activity of the user or the commercial benefits
available from works which use or are derived from the open source software.

Developers also need to consider the commercial, strategic and competitive
implications of using the open source model. Sometimes, the model may offer
enormous benefits in reducing development costs or extending or accelerating
market penetration. In other cases, the reversal of traditional intellectual property
rights might not be commercially attractive, denying the opportunity for licence
revenue.

Where open source is used, the terms of the licence are fundamentally important.
Conditions should be tailored to suit the particular needs of the licensor and crafted
to achieve identified commercial objectives. Use of a particular existing form of
licence can carry with it risks that liability is not effectively excluded and that other
necessary contractual provisions are omitted.

Schedule 1

Selected References

A word of caution with references: Many of the writings on open source software are from
the perspective of developers who regard the social ideal of shared software and the
developers’ community above all other ideals (such as securing a revenue model), without
acknowledging some of the legal difficulties with open source licensing (such as those
canvassed in this paper) or the concerns raised by others about security issues. They are
valuable for what they are, but should be read with that in mind.

Open source licences
Lists of licences with links to the licence conditions:

 84

GNU
http://www.gnu.org/licenses/license-
list.html

The Licences are categorised according to
whether they are compatible with GNU’s
General Public Licence (for combination of
GPL compatible software from different
sources for on-supply), whether a “free
software” licence or whether “copyleft”
licence (but not GPL compatible).

Open Source Initiative (OSI)
www.opensource.org/licences/index.htm
l

A useful site, including details of use of the
OpenSource certification mark and approval
processes to become entitled to describe
software as OSI Open Source Certified
Software. Else where on the site is the
canonical definition of Open Source and the
nine principles of it.

Publications

Dennis M. Kennedy, “A Primer on Open Source Licensing Legal Issues: Copyright,
Copyleft and Copyfuture”, 20 St. Louis U. Pub. L. Rev. 345. Contains a concise history of
open source licensing and a US perspective on some of the major licenses and principles.

Shawn W. Potter “Opening up to Open Source”, 2000, 6 Rich. J.L. & Tech. 24. Contains
some interesting discussion of legal (US) and industry issues.

Raymond, Eric S, The Cathedral and the Bazaar, available at
http://tuxedo.org/~esr/writings/cathedral-bazaar/. This was an early (and evolving)
articulation of the different philosophies of open source (and its colourful, eclectic,
interactive and cooperative character – the bazaar) and proprietary, autocratic and highly
managed approach of traditional commercial licensing (the cathedral). A manifesto of the
true believers.

Newsforge, The Online Newspaper of Record for Linux and Open Source,
www.newsforge.com/

For a useful collection of links see http://www.dwheeler.com/oss_fs_refs.html

Security

John Pescatore, “Microsoft Sends Mixed Signals About Software Security”, 13 May 2002,
Gartner, at
http://www3.gartner.com/DisplayDocument?doc_cd=106790.

Kenneth Brown, “Opening the Open Source Debate: A White Paper”, June 2002, Alexis de
Tocqueville Institution, withdrawn from publication but made available at
http://www.adti.net/html_files/defense/opensource_whitepaper.pdf See also the discussion
of this paper at
 http://www.wired.com/news/business/0,1367,53124,00.html

 85

http://www.gnu.org/licenses/license-list.html
http://www.gnu.org/licenses/license-list.html
http://tuxedo.org/~esr/writings/cathedral-bazaar/
http://www.dwheeler.com/oss_fs_refs.html
http://www3.gartner.com/DisplayDocument?doc_cd=106790
http://www.adti.net/html_files/defense/opensource_whitepaper.pdf
http://www.wired.com/news/business/0,1367,53124,00.html

NSA’s discussion about SE Linux at www.nsa.gov/selinux/index.html

Schedule 2

Short Glossary

A useful reference for other expressions is http://whatis.techtarget.com/.

Be careful with expressions like those described below, since industry usage of the
expressions varies greatly. Defining exactly what you mean in a licence, website or
software documentation is the best approach, to avoid any ambiguity about usage of a
word.

Using one of these words does not necessarily convey a precise meaning and could lead to
misuse of the software or dilution of legal rights based on confusion created by the
ambiguity. With that warning in mind, here is a limited glossary for those starting out in
open source.

BSD or Berkeley
Software Distribution

used narrowly, means the open source licensing model
developed in the late 1970s and early 1980s out of the
University of California at Berkeley by Bill Joy (later a co-
founder of Sun Microsystems) in their efforts at improving
Unix. Unlike the GPL model of the Free Software
Foundation, there is no express obligation to return
improvements and derivative works back to the common
pool on the same terms as the original open source licence,
although that is part of the underlying philosophy of the
licence. Used widely, BSD refers to a number of licences
of a similar kind, including FreeBSD and Open BSD.

Copyleft The principle that a modification or derivative of a work
(software, manuals etc) should be distributed on the same
basis as the original work, ie with the same freedom to
copy, modify (therefore with access to the source code)
and distribute. Some call this a “viral” obligation, because
it causes the self replication of the copyleft principal for all
distributed and derivative works.
Not all Freeware is copyleft – a licence might allow the
user to distribute modified or derivative work on terms that
do not grant these freedoms.

Free See Freeware
Free Documentation See Freeware.
Freeware or Free
Software

Does NOT necessarily mean the software is supplied at no
charge. What it refers to is the freedom of use – usually,
freedom to distribute and modify the software (therefore
with access to the source code) and to use pieces of the
software to make new programs.
However, the expression does not necessarily mean that
there are no restrictions on use or distribution. Freeware
could be on terms that require any on-licensing or any
distribution of derivative works to be on the same terms as

 86

http://whatis.techtarget.com/

the original software (ie a “copyleft” requirement).
Similarly, “free documentation” used in open source
parlance generally refers to a particular level of freedom to
copy, modify and redistribute it, with or without the
payment of a fee.

FSF or Free Software
Foundation Inc

The organisation formed for the GNU Project and now an
advocate of open source free software, found at
www.gnu.org/. FSF promotes 3 forms of licence:
• The General Public Licence;
• The Lesser General Public Licence; and
• The GNU Free Documentation Licence.

GFDL or GNU Free
Documentation Licence

The GNU licence of the Free Software Foundation for the
licensing of manuals and other documentation associated
with Free Software – allowing freedom to copy, modify
and distribute, whether or not on payment of a fee. Found
at www.gnu.org/licences/fdl.html.

GNU A recursive acronym for “GNU’s not Unix”, pronounced
“guh-new”. Originated in 1984 as a project of the Free
Software Foundation (see www.gnu.org/) to develop a
Unix-like operation system as freeware, although it is now
an organisation with wider advocacy for open source
licensing.

GPL or General Public
Licence

The standard GNU Project open source software licence of
the Free Software Foundation Inc, found at
www.gnu.org/licences/gpl.html.

LGPL or Lesser General
Public Licence

The software library version of the GNU Free Software
Foundation Inc’s General Public Licence – permitting
linking of the software library into non-free programs, but
without the requirement of the General Public Licence that
the entire derivative work be distributed on the same free
software basis as the original library. It is found at
www.gnu.org/licences/lesser.html.

Open Source is where software is distributed in both source code (ie
human readable programming language) and in the
executable (machine readable) form. Open source does not
necessarily imply that the code is made available on a
“copyleft” basis or that it is “freeware”. For the canonical
definition of Open Source and the nine principles of it,
originally written by Bruce Perens, see
www.opensource.org/docs/definition_plain.html

Public domain software usually refers to software where its creator allows it to be
copied, used, modified and distributed with no attached
restrictions or limitations as to ownership or payment of
fees. Sometimes this is by an express waiver of rights, but
more often because of what can be implied from the
method of it being made available, the absence of any
assertion of legal rights and other surrounding
circumstances.

 87

Shareware often is used in relation to trial software distribution. The
software is shared, sometimes with a built in disabling
time clock (ie a validity period or drop dead date), to allow
the user to examine it before deciding whether to buy a full
license. If some of the functionality is disabled it is called
“liteware”. Shareware is not necessarily open source,
copyleft or freeware.

Viral obligation A licensing obligation that distribution of the software –
and of software which is derived from the original
software – be on the same basis as the original code’s
licence, ie the means by which “copyleft” principal is
effected in a licence. The expression is not one the FSF
and other open source proponents find flattering.

 88

Chapter 5

Security with Free and Open Source Software

PROFESSOR WILLIAM J (BILL) CAELLI
Head, School of Software Engineering and Data Communications,

Queensland University of Technology

INTRODUCTION

This paper considers the debate on security in relation to the “open” versus
“closed” software environment. It discusses concepts of trust in this context and a
particular case of one open source, high-security operating system under
development. It then evaluates emerging international standards that may have an
impact upon the choice of such trusted systems over what could be argued as being
less secure, commodity options.

In considering the basics of security in relation to complex computer software
systems, there is a need to discuss concepts of trust and then the application of this
to so-called “trusted” or “trustworthy” systems, the term “trustworthy” implying a
lower level of overall confidence and security functionality. A particular example
of software research and development aimed at the production of such trusted
software systems and one under consideration at QUT is known as “SELinux”.
This is a 2 year-old security enhanced version of Linux that has been developed by
and is available, under open source licencing conditions, from the National
Security Agency (NSA) in the USA.147 From a management perspective, however,
the situation that is really likely to emerge could be termed the “why choose trusted
systems” problem. The emerging imperatives for this need to choose come about in
response to two new international standards. These are:

• International standard IS-17799, known as the “Information Security Management
(ISM)” standard, and

147 NSA claims: “End systems must be able to enforce the separation of information based
on confidentiality and integrity requirements to provide system security…. Unfortunately,
existing mainstream operating systems lack the critical security feature required for
enforcing separation: mandatory access control. As a consequence, application security
mechanisms are vulnerable to tampering and bypass, and malicious or flawed applications
can easily cause failures in system security.”

 89
See: http://www.nsa.gov/selinux/ [11 November, 2002]

http://www.nsa.gov/selinux/

• International standard IS-15408:1-3, commonly known as the “Common Criteria”
document, which is concerned with security and evaluation techniques for creating
and assessing so-called “Trusted Systems”.

How these two standards impact on the whole problem of open versus closed
security is examined in this paper. Finally, we will consider what influence, if any,
software licensing procedures may play in this area.

THE MOTOR VEHICLE ANALOGY

There’s no doubt about it; cars are gradually becoming computers on wheels.148

However, put simply, we want our cars to be more reliable than our desktop
computer systems. When driving on a high speed highway, the very idea of
“rebooting the car engine” while operational is simply unacceptable. In the car
case, we all want safety and security inside with confidence that we are travelling
in a trustworthy environment, as indicated in recent Mercedes Benz car
advertisements. At the same time, we have to acknowledge that on the outside
there are other drivers who can metaphorically “attack and damage” the particular
vehicle that we are using.

The recent IEEE article by Berger, about the forthcoming generation of motor
vehicles, sets out a series of propositions and consequences related to the
incorporation of computer systems into motor vehicles. The propositions are that:

• Failure can ruin a purchase, with the customer left unhappy;
• Failure can cause injury and death, even more true as microprocessors and allied

embedded systems occur in practically everything;
• Servicing is costly;
• Users give the product almost zero maintenance; and,
• Complexity is causing more failure points.

So reliability and testability cannot be an afterthought and should come very early
on in the design process. Formal development tools are needed. Communication,
particularly amongst the developers themselves, is critical. Such communication is
needed up and down the whole development chain if one is going to have security
in any product or system.

Of course the important concern in the context of this paper and the information
technology industry, in particular the software sector, is just how will this apply in
an “open source” environment. In other words, what is the relationship “chain” in
open source software systems development that allows for enhanced security and
thus trust to be solidly incorporated? Is it any different, better or worse than the in
the so-called “closed” or “proprietary” software systems case?

 90

148 Berger, I. “Can you trust your car?”, IEEE Spectrum, April 2002.

IT’S NOT THE NET, IT’S THE NODES

Today, the major problem we are facing in relation to the security of information
systems and data networks is not completely based upon the underlying and
connecting “Internet” itself. However, it could be argued that users like to think
that the problem is the data communications infrastructure of the Internet and
indeed the press usually reports information security breaches as an “Internet
problem”. In actual fact, it must be submitted that “it’s not the ‘Net, it’s the
nodes”. In other words, major security threats may be assigned to the computer
systems that form the “nodes” of the global Internet; the hosts/servers, the end-user
client systems and computer based switch/store-and-forward computers. Thus, in
assessing the background to illicit activity the following questions may be posed.

• How many cases have been successfully prosecuted in relation to detection,
capture and prosecution of those involved in so-called “line tapping” activities in
relation to the Internet?

• How many “rogue” Internet Service Provider (ISP) personnel have been arrested
for illicitly intercepting data line activity or store-and-forward message banks?

The answer in both cases appears to be “very few” at the most. In general, case
history points to problems with vulnerability of the nodes to even unsophisticated
attacks. The number of prosecuted and/or reported cases involving actual “line
tapping” of data in transit appears to be extremely small compared to those related
to computer systems penetration. The majority of that penetration, either by illicit
access or by insertion of Trojan horse / virus programs, has occurred because of
difficulties and limitations in the operating system and/or middleware, such as data
base servers, web browsers, etc., used on the systems forming the nodes; the
servers, clients and switching systems.

INFLUENCES ON THE NEED FOR SECURITY

Why is security suddenly so important? We now have an Information Security
Management Standard (IS 17799) being adopted by both Federal and State
Governments in Australia and elsewhere in the world. This standard may be
considered as a definition of a minimum set of responsibilities on management to
ensure that information systems public and private enterprises provide to any end
user are fit for their purpose. At the same time International Standard IS 15408, the
“Common Criteria” standard, sets out corresponding security requirements for the
developers and producers of computer and allied information technology products
and systems. It defines concepts of security “functionality” required by users of
systems and, then, the assurance or “evaluation” levels needed to ensure that users
may trust the security functions provided. However, few commodity products have
been evaluated and tested under this standard and, where this process has been
undertaken, they have attained only the very basic level of security functionality
and evaluation.

 91

Understanding of these standards requires that managers and information
technology professionals alike have some information security background in the
form of education, training and experience. Unfortunately this may not often be the
case and it may be unreasonable for the chief information officer (CIO) in an
enterprise to be able to assess the security status of products and systems employed
in the enterprise. For the home and small business user, such an evaluation is
simply impossible as it is for any other complex system, e.g. a modern motor car
braking system, etc.

In many cases this means that a manager usually calls upon external contractors to
perform security assessments on their system giving rise to the sudden growth in
companies specialising in this arena, with, again, reasonable questions being raised
about their competence through education, training and experience in the security
area. Such an assessment will normally cover IT products, systems and operations
since the ISM covers all of these three matters.

In summary, ISM is important since it is rapidly becoming a “due diligence”
standard for information system managers in both public and private enterprises.
However, whether or not enterprise management has the ability to judge installed
IT systems against that standard is a contentious question.

THE “PERIMETER SECURITY” VIEW

An alternative view to information systems security at the computer system level
has emerged over the last twenty years, the period of the development of the
commodity personal computer system. The situation may be summarised in the
following statement “Hey hold on – don’t worry about the computer system itself –
we’ll protect it by putting file walls and anything else we need around that system
and that will safeguard it when connected”. We call this attitude one of total
dependence upon “Perimeter Security”. However, we must now acknowledge the
failure of such a perimeter security paradigm as the only basis for overall
protection of enterprise information systems. It was, incidentally, not the paradigm
of the mainframe or minicomputer era of the around the 1960s to the 1980s. The
concept of embedding security into the computer system itself was clearly agreed,
as evidenced by the influence of the “MULTICS” system, developed at the
Massachusetts Institute of Technology (MIT).

Perimeter security problems and limitations are increased as moves are made to
high bandwidth or “broadband” data networks. Imagine if we had to filter every
single packet moving through a particular multimedia conversation or the like,
established through a “web services port”. Imagine if every packet had to go
through a complex application level rule implemented in some sort of next
generation intelligent, filtering, fire-wall. Performance degradation is enormous
and obvious. In actual fact what we must likely would do is to forget all about such
security and “punch a hole” through the whole fire-wall system and establish
unfiltered, direct connection.

 92

So broadband is now starting to spell the end of what we know as total dependence
upon “perimeter security”. Indeed, perimeter security should never have become a
primary defence system. It is unfortunate that it became that. Indeed, it became
such a primary defence mechanism at the systems level in the late 1980s onwards
as manufacturers abandoned well-designed and implemented information security
parameters at the operating system and even at the hardware levels in the 1980s to
meet cost and market demands, as they now readily admit. With the possibility of
over 1 billion PCs having being sold and global interconnection to the Internet a
reality, the problem of “backstitching” security into the PC’s operating system
could be seen as almost an unsolvable problem.

PUBLIC KEY INFRASTRUCTURE (PKI)

In addition, we have also seen the failure in widespread and consistent adoption of
PKI (Public Key Infrastructure)149 based digital signatures for verification of the
source of software systems and data downloaded from servers on the Internet.
Adoption of the need for assurance of the actual source of software packages in an
open Internet environment has now been readily accepted. If nothing else I know
that if my software system fails I can say “well at least I know where it came from
– or I hope I know where it came from”.

The problem is, however, that I really have no assurance at all that what I installed
is what I thought I installed. A good example of this can be attested to by those
who downloaded and used the “Kazaa” system to do “peer-to-peer” information
sharing. They can suddenly find that they have a few little “Easter eggs” inside
their system, i.e. program features and activities that they simply didn’t know
about, want or even permit. Verification of the source of a program offers no
security information related to its content, quality or behaviour. In this sense, then,
digitally signed software packages only offer forensic evidence to end users in
cases of security violation caused by downloaded packages.

NATIONAL INFORMATION INFRASTRUCTURE PROTECTION (NIIP)

We are also starting to see political pressure emerging, particularly in larger
Western countries, and under the auspices of the Prime Minister, the Minister for
Information Technology, Communications and the Arts and the Attorney General
in Australia, towards the need for protection of the national information
infrastructure. In this regard, national information infrastructure protection (NIIP)
will have to become a shared responsibility between the private and public sector

 93

149 The Public Key Authentication Framework is a framework for the generation,
distribution and management of public key certificates. These certificates bind the identity
of users to their public key material in a trusted and legally based manner. See: National
Office for the Information Economy, “Gatekeeper Frequently Asked Questions”,
[http://www.govonline.gov.au/projects/publickey/faqs.htm#12] 11 November 2002.

as even Government and defence enterprises make use of privately owned
information technology infrastructure or outsource information service provision to
the private sector. This particular pressure may start to put new legal obligations on
directors in targeted vertical industries in Australia and overseas. For the first time,
we may actually start to see explicit legislative instruments move through the
United States Congress in relationship to the added responsibilities of directors or
owners of what we would call critical infrastructures in the United States. This
could also extend to other countries.

In this regard, the future appears to be concerned with the concept of “web
services”. Such “web services” will again become a “backbone” for critical
information systems in society. This is the background against which we have to
consider where we are headed in relationship to information security and, of
course, this is again relevant to the open source movement.

SOME BASIC INFORMATION SECURITY PROPOSITIONS

Security Architecture and Implementation

First, secure systems involve more than commitment to bug fixes and software
quality. On web discussion groups about information or system security,
concentration has been on bug fixes, particularly so-called “buffer overflow”
problems. Computer security is far more than that. Indeed, robust computer
security, as demonstrated by the MULTICS research activity, clearly requires that
secure systems must be ones that tolerate such software quality problems without
degradation of overall system security.

Thus, in relation to the open source security debate, the central theme of this paper,
the discussion is much more related to the understanding and development of the
following matters:

• existence of an underlying system security architecture, with appropriate
mechanisms

• robust system design,
• security engineering,
• hardware interaction,
• continuous, trusted enforcement of security functions, and
• assessment and evaluation of the underlining security architecture.

In other words, it is not just bug fixes and software quality that is the matter in
hand. The question is: “Does the software system implement and support a
comprehensive security architecture, in cooperation with the underlying hardware,
which is well defined, providing the appropriate features that are consistently
enforced?”

 94

SYSTEM LEVEL DOCUMENTATION

Almost 40 years ago, in the era of mainframe systems, machines such as the IBM
System 360 and 1401, Control Data 6600, and others were all supplied with
complete “system programmers documentation” or “system programmers
manuals”. These tomes used to occupy whole bookcases. They contained the
detailed specifications needed for a program to interact with the operating system
and by which computer professionals could maintain, repair and optimise the
performance of the operating system itself. Fullness and completeness were the
targets of this particular documentation. The idea that “undocumented” system
features (calls, etc) could exist and be tolerated was simply non-existent. The
concept that security could be found in not documenting existing system features
was simply not considered a reasonable approach.

APPLICATION “VIEWS”

There is an important difference between application program development today
and that of some twenty years or more ago. The difference may be summarised as
that between an application’s “middleware view” and its possible “system view”. A
good example of this can be gleaned from both Microsoft “Windows” and LINUX
based computer systems. An application developer creates a computer program by
making “calls” to some form of “middleware” sub-system, such as a graphic screen
service emulating a “desktop environment” to display information on a screen or to
accept information from an input device, or to a “web browser” sub-system. In the
Microsoft case, this may be the so-called “Win32” application programming
interface (API) while in the LINUX case it may be the so-called “X-Windows”
interface or higher level sub-systems.

However, it is usually possible for the application program to make direct “calls” to
services offered by the operating system itself, so-called “system calls”, through an
“operating system API”. In many cases today, these “system calls” are simply not
documented and the secrecy of their existence and proper usage may even be
carefully guarded by the software supplier. In simple terms, open source simply
prevents this from happening in principle since all source code for the operating
system, its sub-systems, such as the graphics screen or “desktop” system, and the
like may be perused and all interfaces determined and fully documented. From a
security viewpoint, the need for full documentation of all system calls must be
regarded as being of extremely high priority since these calls may be responsible
for notable security actions at the operating system level, e.g. change the
“privileges” of an application program.

 95

SOFTWARE COMPONENTS

We are faced with a future based upon the usage of “software component”
libraries. All software suppliers are moving in that direction. The idea is that in the
near future programmers and other IT professionals will be accessing whole
application systems and libraries of systems, based upon “reusable component
libraries”, and integrating them into overall information systems to meet enterprise
needs. Moreover, it may be that non-expert users may be capable of performing
such functions themselves with little to no training, the ultimate “end-user
computing” paradigm. Trust will now have to be placed not only in the computer’s
hardware and basic operating system but also in the myriad of library functions
used to construct final application programs. To use the car analogy again, IT users
will become “car drivers” selecting a basic car and formulating desired options,
with no knowledge at all of underlying principles, engineering structure, robustness
or the like. Dependence upon security assurances by the supplier will be total.

However, this does mean that new levels of security and control will be needed at
the operating system level. The phrase “B means Business”150 refers to the
requirement for so-called “mandatory” security controls in operating systems. This
is in line with what is known as the set of requirements for “B level” systems in the
USA’s 1980s “Trusted Computer System Evaluation Criteria (TCSEC)” or
“Orange Book” terminology. In other words, as we move to component systems
we are going to have to “up the anti” and an operating system will need to enforce
the security policy of an enterprise in a far more reliable way simply because the
applications that form that enterprise’s information system will be constructed from
components whose real source, security functionality and evaluation status may not
be known.

“PALLADIUM”

The “Palladium” may be remembered as a big and old show palace in London as
well as a precious metal. However, the term is now used by Microsoft to describe
its next generation hardware and software based security subsystem for PCs that
incorporates a digital rights management (DRM) system for such data “content” as
Hollywood films and music.151 This creates a special “secure zone” on the
motherboard of the PC. It is also a de-facto admission that the PC now connected
to the Internet is not secure for Web commerce. Now, interestingly, Microsoft has

150 Caelli, W. “B means Business”, Proceedings of the National Information Systems
Security Conference, Baltimore, USA. 1995.

 96

151 “Palladium is Microsoft Corporation’s code name for an evolutionary set of features for
its Windows operating system. Combined with a new breed of hardware and applications,
these features will give individuals and groups of users greater data security, personal
privacy, and system integrity.” As per John Manferdelli, General Manager Windows
Palladium Business Unit [http://www.microsoft.com/presspass/features/2002/jul02/07-
01palladium.asp]

announced that it will reveal the source code for the operating system level support
software for this Palladium innovation.

"We will be publishing the source code because people will need to trust this”, said
Mario Juarez, group product manager for the Palladium project at Microsoft. "To
get people to believe in what is happening in that little piece of code is critical”.152
But revealing the source code does not assist with complete specification details of
the underlying hardware that forms the Palladium structure, particularly if that
hardware structure is eventually incorporated into the main CPU chip of the PC,
i.e. the Intel Pentium’s replacement. In a strange way, a Microsoft representative
has already made the case for open source in the above statement!

HISTORY AND TECHNOLOGY

“E-Government”

It is always valuable to examine the history of technology. This may help to shed
light on one question of note in this paper, i.e. “Why is it that information system
security is becoming quite important”? One answer lies in moves towards so-
called “electronic” or “e-government”. It is common around the world for some
governments, for example, to have “whole of government” agreements with
suppliers, such as Microsoft just as with IBM in the past. Indeed, government
information activities may be wholly “outsourced” to third parties. Almost by
default, commodity, consumer PCs will be used as the vital user interface to these
critical information systems. Such companies will then automatically be involved
in moves towards e-government systems, for example. So security of their systems
is critical.

Consequently I pose a question asked in 2001 relating to the Microsoft Windows-
2000 operating system:

Can someone please tell me why a fault in my soundcard driver has to crash my
system? I mean, really. Think about it.153

This is a real problem since essentially what in the past may have been regarded as
an esoteric operating system level problem becomes a real world concern for
desktop users. Security, in the form of “availability”, can be radically affected by
the simple addition of a sound element to a desktop PC used in a critical
information system in any public or private enterprise.

152 Robert Lemos, “Microsoft to reveal Palladium source code”, News.COM, 24 June 2002,
[http://news.com.com/2100-1001-938973.html]

 97

153 P Viscarola, “Peter Pontificates: I Dream of … A new Version of Windows”, The NT
Insider, OSR Open Systems Resources Inc, Vol 8, Issue 4, July-August 2001

Secure Applications

An important problem emerging throughout the world in the IT industry is the
wrong idea that all information security problems can be solved by putting security
in the application. This is wrong – it can’t be done. A recent paper from IBM
researchers stated the proposition as follows:

Hardware on which applications run must be secure as must be the operating system
and run time environment in between, while offering a reasonable API for application
developers … Applications cannot be more secure than the kernel functions they call,
and the operating system cannot be more secure than the hardware that executes its
commands.154

Fundamental logic indicates that applications cannot be more secure than the
functions that they call and it must be of concern that an important IBM research
paper has to once again emphasise a basic fact of computer science. The problem
is, however, that IT consumers may be convinced that this could be so and that
work by the vendors of computer systems can be supplanted by application
developers. This is particularly true as we move to software component libraries, as
mentioned above. Now, in turn, the operating system cannot be more secure than
the hardware that executes its commands.

That is particularly important in relation to the Intel central processor unit (CPU)
chips that are used in IBM compatible PCs and elsewhere. For example, it is not
widely understood that the memory addressing capability of the Intel Pentium chip
is not 32 bits but is actually 36 bits. There are other computer hardware
architecture parameters that need to be closely examined in this family of Intel
CPU chips since these basic functions have a fundamental bearing on the overall
security assessment of computer system. The point is that most users are totally
unfamiliar with these parameters while expert attackers may be. This hardware
architecture concern can best be illustrated by an examination of the Microsoft XP
system.

The following statement is taken from a Microsoft published manual that relates to
the development of support software for the Windows 2000 and the XP operating
systems:

Although each Win32 process has its own private memory space, kernel-mode
operating system and device driver code share a single virtual address space
…Windows 2000 doesn’t provide any protection to private read/write system memory
being used by components running in kernel mode. In other words, once in kernel

 98

154 Dyer et al, “Building the IBM 4758 Secure Coprocessor”, IEEE Computer, October
2001 – is there a more complete reference eg page number??

mode, operating system and device driver code has complete access to system
memory space and can bypass Windows 2000 security to access objects.155

This presents a major security risk to any manager of information systems who
plans to use Microsoft Windows 2000/XP based end user workstations or desktop
systems. For example, suppose that I’m setting up a new e-government system for
internal and external usage by employees and contractors. Digital signatures and
virtual private networks (VPN) will all be used. Now, imagine that we have got a
specific group that has decided to innovate with “teleworking” or
“telecommuting”. We have an employee working at home on his or her PC or even
laptop system. A virtual private network (VPN) structure is used to get back to the
office information system. Imagine that at some time one of his or her children
start using the machine for some games and that they are logged into what they
consider to be a popular games site on the web. What happens? Very, very simple.
The game site says:

“Hey – you need the new exciting 5.1 surround sound simulation system”
“OK”, says the child
“Please down load it now”
The child does. The PC’s operating system then asks the child
“Do you wish to install this – Yes or No?”
Of course, the child should say “no” because this is an important system to install.
But he or she naturally clicks the “Yes” button.
What has happened? The download has inserted a device driver into the operating
system.

As soon as that driver is installed security is totally compromised. The driver can
now “address” everything, bypassing all operating system and application security
functions. It can now talk to every part of that particular machine including
bypassing all the encryption on the virtual private network system and any of the
cryptographic service providers that perform all the digital signature functions. In
particular, compromise of the cryptographic subsystem done in this way means that
the evidentiary status of such techniques as “digital signatures” and allied “digital
certificate” usage is now severely lowered and may be rendered useless. Of course,
the end-user should not have loaded the driver but, more importantly, the design of
the operating system should never have allowed a device driver to be capable of
such security bypass.

“Charlie Chaplin”

How did we get into such a state of poor operating system basic architecture and
implementation? Very, very simply: because in the early 1980s we were never
meant to be where we now are with usage of the then “personal computer” or PC.

 99

155 D. Solomon and M. Russinovich, “Inside Microsoft Windows 2000”, Third Edition,
Microsoft Press, Redmond, Washington, USA, 2000

The idea here was that the PC was meant for the end user. It was called a
“personal” computer, not an “office system”, workstation, enterprise system or the
like. It was not linked up to anything. There was no network. It was stuck on your
desk. Today’s equivalent example would be the unconnected “Personal Digital
Assistant (PDA)”. The idea was that the system was to be used by the individual
person who took complete responsibility for it and suffered alone any
consequences of its failure or any breach of security.

Through the PC, IBM advertisements explained, the user liberates his or her own
information activities from the “dreaded, white-robed scientists” in the corporate or
government computer centre, pre-occupied with their “IBM System 370s”, or
whatever it happened to be in those days and taking an interminable time to create
any new application program that was needed. Thus IBM used the “Charlie
Chaplin” figure to promote the IBM PC; the representation of “everyman”, the
“battler” overcoming the pressures and oppression of the “establishment” while
maintaining that spirit of independence and fortitude necessary to survive.

This “Chaplinesque” symbolism is an important factor in understanding the
complete disinterest in any form of information security technology in relation to
the PC by its manufacturers during the first 15 or more years of its widespread
existence and acceptance by business; the place where it was not intended to be!

Indeed, this concept of “liberation” from “information control” at the centre of a
corporate information system was again emphasized in the famous 1984
“Superbowl” advertisement for the then Apple MacIntosh computer with its spirit
of defiance exemplified by the smashing of a “big brother” figure. All of this meant
that security and the PC became themes that were totally opposed to one another
and this problem has existed for over twenty years.

Thus we can pose the question: “Where are we today?”

FIVE ALTERNATIVES FOR PC SECURITY

In relation to the PC of today, whether it can be used as a host/server, end-user
client system or switch/controller, we have a problem in evaluating the
comparative security worthiness of “open” versus “closed” systems. We can
identify five particular areas of interest in a complex series of problems. In this
regard, we really need the analytical and classificatory skills of the legal profession
to try to specify and categorise the complex matters involved as we start to discuss
security in this environment.

Alternative 1 – Proprietary / Closed Systems

The first and most obvious practice is to totally control access to the source code of
the PC’s operating system, as exemplified by the Microsoft Corporation stance, on
the understanding that such an action is necessary, or even highly beneficial, to

 100

preserve the security of the system. This does not mean that some users do not have
access to the source code but rather that it is not freely available to any end-user or
consumer of the product as a matter of course or under reasonable terms and
conditions. In the car analogy case, there is no readily available and complete
“workshop manual”. In addition, even those who do have access to the code would
not normally be involved, as was the case in the early days of the mainframe
systems of the 1960s and 1970s, in employing full time “system programmers” to
create and deploy bug fixes, performance and/or feature enhancements or the like
to the operating system itself.

In some ways this could be called “security by secrecy or obfuscation” and it
includes the case of:

• no ready access by any purchaser to source code for usage and modification or
even for perusal, nor

• availability of full and proper system level documentation.

This path seems to have been advocated and confirmed by Mr J Allchin of
Microsoft in testimony to the USA’s Department of Justice antitrust case in
Washington, DC. Essentially, he is quoted as stating that “too much disclosure of
technical information in the wrong areas would benefit hackers and create more
opportunity for virus attacks”. In the Microsoft case the disclosure of Microsoft
proprietary information in this area was supposed to be of national security
significance. Of course, such an argument indicates that any security architecture
and its implementation may be subverted through access to information on its
structure. This violates one of the most fundamental rules of security for
commercially available systems, as illustrated by the MULTICS work in the 1970s
and the commercial cryptography paradigm, i.e. security does not depend upon
secrecy of mechanisms but rather on a limited data element set.

The rule simply states, as for the case of encryption systems, that knowledge of the
structure of the system must not violate its security. In encryption, this means that
knowledge of the cipher algorithm by an opponent may be assumed but not
knowledge of the cryptographic keys required. In the operating system and
computer hardware case, a similar rule would indicate that while the architecture is
known, individual controls, such as segmentation- bounds registers, cannot be
over-ridden by application or device driver software or the like.

From an end user’s point of view this “closed systems” approach requires full and
complete trust in the operating system supplier and makes contractual obligations
highly one-sided. The vendor of the software system has knowledge, expertise,
information and data that are simply not available to the customer. This is like a car
manufacturer sealing the bonnet/hood of a car to prevent the customer/user from
perusing the engine and effecting any modifications or repairs. In another sense, an
operating system vendor in this arrangement could easily have a major competitive
advantage over application developers should it wish to also enter that application

 101

market since it may possess information totally unknown to the application
developer that may benefit the supplier in many ways.

In arguing this way, a vendor is largely presenting a “time and expertise” argument
in relation to the capabilities of any potential attacker of the system. However,
reverse engineering technologies such as test harnesses, in circuit emulators of
central processor units, both hardware and software based, disassemblers, de-
compilers, etc. have all become widely known and available in the IT profession
and global expertise in this area is on the rise.

A good example of the problem of trying to depend upon proprietary or closed
systems is exemplified by the famous Microsoft “Xbox”. Those who have been
following the Xbox saga know that it is a closed system, or it was, until this month
(July 2002). A paper from MIT gives a good overview and perception on how to
reverse engineer the Xbox.156 Now, why would anyone want to a reverse engineer
an Xbox? One of the main reasons the researcher at MIT claims for doing it, was to
investigate privacy issues related to those who used the Xbox for online tasks. This
is highly relevant since Microsoft recently talked about the Xbox for online
gambling and online gaming applications. It is known that information, such as the
serial number of an Xbox console, installed electronically, is probably accessible to
the kernel of the Xbox’s operating system. Now, what happens to this information
when an Xbox is plugged into the Internet? Well, who knows? Encryption is used
to secure various parts of the Xbox but the nature of information relayed to, for
example, Microsoft’s projected online game service, is totally unknown. So, the
possibility of utilising a closed system for massive monitoring of people could be
claimed to be quite enormous, as documented fully in the MIT paper.

In summary, then, an argument against closed systems for security is that given
time and resources, both becoming available, a closed system can be penetrated.
Time and expertise can defeat “security by obscurity”. For example, there is a very
popular reverse assembler program named “IdaPro” from Europe. This quite good
reverse assembler can handle a number of popular central processor units, not just
those from Intel, and it is available now.

Thus, available technologies are getting better, from test harnesses to reverse
assemblers to decompilers. Indeed, as an aside, the use of a so-called “test harness”
to shed light upon the structure of a software system through structured testing of
its actions, has been broadly seen as legally quite permissible. It does not involve
disassembly or decompilation and leaves the target software system, in its binary
form, intact. However, the end result may be the same.

Finally, use of closed systems by enterprises has a number of interesting aspects to
it. Under the standard for Information Security Management, IS 17799,

156 Details are available the following web site at 23 January 2003:

 102
http://www.xenatera.com/bunnie/proj/anatak/xboxmod.html

management is responsible for timely and effective creation of required security
processes to meet overall information system security needs. We now have to
recognise that if we adopt closed, proprietary systems there will be an inability of
the end user to repair a system if needed after a successful attack caused by a
system “bug” and total dependence upon the supplier has to be clearly evaluated
and documented. Moreover, the end-user or manager may have absolutely no
ability to judge the security status of the underlying operating system or hardware
and is compelled, in IS 17799 terms, to assign any statement in these areas to the
vendors of the systems.

Alternative 2 – Full System Documentation Supplied

This alternative mirrors the mainframe situation of the 1960s and 1970s when
complete “system manuals” were made available to “systems programmers” for
maintenance and enhancement activities. Could it be made legally binding upon
manufacturers that system documentation be made available to the end user and
that it be made full and complete? Could we say that there is a requirement that no
undocumented features exist? In this sense, the consumer can be made
knowledgeable about just what he or she has purchased. A car analogy helps again.
So called “workshop manuals” have existed for a long time and contain the details
needed for the maintenance of the car and even for its enhancement with add-on
features. Is this a valid security alternative?

Questions that have also to be determined include:

• Is that system documentation reasonably priced and readily available, and
• Is there unlimited usage on such documentation, apart from obvious copyright

matters.

From the end-user point of view, in determining security parameters, an end user
organisation would have to possess the expertise to make use of such
documentation and to assess the security status of the organisation’s information
infrastructure with contributions from that documentation.

Alternative 3 – Source Under Agreement

In an access to source code agreement between the supplier and the
purchaser/licensee, the user has access to the source code of the pertinent software
systems. In this case, it can be argued that responsibilities and liabilities as to
information security matters then lie with the user in that the user could have
determined any underlying weaknesses in security architecture and
implementation. In turn, such weaknesses could then have been assessed in relation
to the overall information system security requirements.

This is an interesting prospect particularly here in Australia as we look at the
standard IS-17799. The Australian and New Zealand version of it give

 103

responsibilities to managers. But is it sufficient to be able to say that since we’ve
signed up to have access to source code under agreement and therefore have
availability, we will be able to fulfil our obligations? The end-user enterprise
would have to assign expert personnel to assess such source code. That might be
satisfactory for large organizations but for the home or small business end-user it is
unrealistic. The inexpert home user particularly, say in the e-government
environment, will have nothing to do with the source code of, say, Microsoft’s
“Windows XP” or the application system sitting on top of it. The user simply
“sees” an “end user environment” or relevant application operating on the
computer system. Thus, at an individual level there is a problem. In summary, the
value to the consumer is dubious in the case of source code availability under
agreement.

However, there is an interesting aspect in this for the emerging “software
component libraries” of the future. We can pose the question:

• “How will I know what I’m getting if I access a component library?”, and
• “Whose responsibility is the guarantee for security and safety of that library?”

Alternative 4 - Open Source

In this case, we are talking about the equivalent of the workshop manual in the car
industry. For example, I can walk out and buy a Holden Commodore. I can go to a
shop and buy a freely available workshop manual. I feel free to open up the bonnet
or hood over my engine, undo the engine, pull it apart and use my workshop
manual to obtain the information I need in order to “hot it up” or to cool it down or
to change it. I can do this in anyway I feel like. I have that right. Thus this case
refers to the condition of ready availability of the source code to a software system
at any time, by anybody, at a reasonable cost and without any form of onerous
agreement being required.

I submit that this analogy sheds light on precisely how the “open source” issues we
know today came into existence in relation to the PC / workstation / server
environment. It could be submitted that IBM, Microsoft, and other companies have
become resistant to such openness because of hardware and firmware disclosure
decisions made at the start of the 1980s, not because of software. Indeed, without
that disclosure it could be argued that the PC revolution as we know it could not
have occurred and that companies such as Microsoft would have remained as
small, specialised vendors to IBM. Essentially, the disclosures made possible the
“IBM PC clone” industry and the rest “is history”.

The interesting reason for all this was that the IBM PC Model 1 in 1981 was made
available with an optional, low cost book called a “Technical Reference Manual”.
This manual from IBM contained the complete schematics for the whole
“motherboard” of the PC, its fundamental architecture and hardware/firmware
construction. It contained the source code for what was called the “BIOS” or

 104

“Basic Input/Output System” that allowed external devices to be connected to the
machine and for any required operating system to readily “converse” with the
underlying hardware in a generalised and convenient way. It contained full
hardware diagrams and hardware schematics. An interesting side effect of this was
that the structure of the IBM PC was able to be evaluated by IT professionals.

Of course in the case of the car if I bought my workshop manual and pulled apart
the V8 engine on my General Motors car, I really don’t automatically assume that I
have a right to build another General Motors V8 engine that is an exact carbon
copy and to market it in competition. This was even true in the early 1980s as
“clone PCs” emerged. But I could resort to other parts of the law, that offer
protection of my adapted or derived General Motors V8 engine. By having
knowledge of my V8 engine, for example, I could remove two cylinders and call it
the new “Super 6” engine. The “ideas” of the original engine have been used but
the manifestation is different. This was the case with the PC clones and the birth of
such companies as Compaq and others. So we are back to intellectual property
concerns and interpretation of pertinent law.

Alternative 5 - Freeware

This is generally agreed to be the real concept of “open source”. A user has the
right to obtain, adapt, modify, use, pass on, etc. the source code to the software
system under liberal licensing agreements. The source code may even be published
in an accessible way with no charges applied for such access. But can a user make
money on the code used? If commercial activity is desired with such freeware,
what different arrangements need to be made, if any?

THE OPEN / CLOSED DEBATE

Which of these systems helps us in relationship to assessment of the security of an
overall information system itself which incorporates products or systems subject to
agreements as outlined above?

The debate as to just what the “rights and wrongs” are in relation to security
assessment and the open versus closed source code question moves between the
two obvious limits. These are simply that making the source code of software
generally available can create a security problem of varying intensity versus doing
this is essential for the creation of trust. Depending on just who is making the
argument the “intensity” at each end is seen as highly variable. However, there is
an opinion that, from a security and technical point of view, closed versus open
source argument is largely irrelevant. It has to be emphasized that in this technical
view it is assumed that the statement as to security assurance becomes the
responsibility of the information system management and not the system
manufacturer or vendor.

 105

Recently Anderson (LEMO-02) has argued that, if security is measured by the
failure rate of software in relation to security “holes”, then an analysis similar to
the “mean-time-before-failure” paradigm used in other engineering areas indicates
that open and closed software systems may be expected to be about the same. He is
quoted as saying that “other things being equal, we expect that open and closed
systems will exhibit similar growth in reliability and in security assurance”. The
problem here is that the concentration appears, in the reports, to be centred around
software “bug reports” rather than the discovery and analysis of more fundamental
design and construction flaws related to system security which may alleviate such
problems. In other words, does any higher level software system fully support or
fully use any underlining hardware or system software features? In this regard the
question must then be posed: “What is the ability of the application oriented IT
professional or the information system’s managers or user to assess the underlying
operating system itself?

SECURITY IN THE COMPUTER HARDWARE

Segmentation Hardware

In the not so distant past the main information security facilities and their
enforcement were based upon the computer’s hardware architecture and
implementation. The Multics proposal, mentioned above, of the 1960s to the early
1980s proposed a full, hardware based security architecture. The Multics system,
while itself not widely accepted into mainstream mainframe computer products
offered to the marketplace, did lead, however, onto the design of the Intel 286
processor and to the Intel “Pentium” processor that we have today. For example,
the buffer overflow problem which has been one of the main problems in computer
security for at least the decade of the 1990s, was largely solved by the Multics
computer science people a long time ago by use of a concept of “memory
segmentation” architecture. Not only did the segmentation architecture enforce
proper memory management at the hardware level but it also allowed for the
separation of data and program code at the hardware level such that data could
never be “executed”. However, what was happening at a deeper level with Multics
was the realisation that computer architecture for reliable information security had
to assume that computer programs normally did have “bugs” that could affect the
total operation of the system and thus this major factor had to be allowed for and
overcome. This also added further hardware based security mechanisms to the
Multics structure, such as the famous “protection ring” technology, not considered
in this paper, but also implemented in the Intel iAPX-286 CPU and beyond to
today. This enabled the separation of program types into varying levels of security
trustworthiness.

Now, the segmentation hardware architectures proposed in the Multics system, as a
mechanism for added computer security, were essentially carried through into the
Intel processor environment from the early 1980s and the Intel iAPX-286, used in
the IBM PC-AT computer. However, unfortunately that architecture is effectively

 106

“turned off” when examining the operations of current commodity operating
systems, including Linux and Microsoft’s Windows systems. The problem of
buffer overflow threats to system security, while being solved a long, long time
ago, still exists today since system software developers just simply did not want to
know about this advanced segmentation architecture that, as they wrongly thought,
imposed additional design thought and implementation complexity on software
development.

So, here is an example of how freeware or open source will let us assess just one
level of security architecture existing within the system. In the closed system
environment we cannot assess whether or not the full security features of the
hardware are properly and fully utilised in the operating system structures. We are
totally dependent upon any statements of the manufacturer in this regard, as
evidenced by the Windows XP device driver case mentioned above.

Judgement on the eventual use of the full security features of the Intel Pentium or
beyond has to be reserved even though they are fully available to be turned on by
commodity oriented operating system developers. However, how do you know to
what extent these features are turned on or turned off, used or ignored, correctly or
incorrectly supported and so on? An answer depends upon the willingness of a
vendor to provide complete information on this or by changing the source code of
the operating system itself yourself, the open source/freeware case.

THE “RAINBOW SERIES” OF THE UNITED STATES’ GOVERNMENT

Thus we have had an architecture for computer security for a long time. The
problem was one of assessing such structures so as to give some assurance as to the
trustworthiness of a computer system. Now 20 years ago the United States then
National Bureau of Standards (NBS) published the first of what was to be known
as the “Rainbow” series of books. The first of these books, each one usually given
a nickname after the colour of its cover and thus leading to their nomination
together as the “Rainbow Series”, was the 1983 “Trusted Computer System
Evaluation Criteria (TCSEC)”. It is worth noticing that this concept of defining a
series of publication that outline the concepts and methodology for determining the
security of computer systems has now been standardised internationally as
international standard IS-15408, also known as the “Common Criteria”.

The important thing about all this is that besides saying that we have to have
security functionality in a computer system that can be used to create trusted
applications and so on, we have to have an enterprise system security policy that is
reliably and continuously enforced by the system. Such an assurance must come
from the vendor unless, of course, we can assess the operating system and any
relevant “middleware” ourselves, a process of “evaluation” which requires the
pertinent source code and expertise.

 107

Assurance

But we have to make sure that we have such security assurance. It is required to
make any real statement in relation to the IS-17799 security management standard
for “real-world” information systems. Assurance means that hardware / software
mechanisms can be independently evaluated to provide sufficient evidence, and
then confidence, that a system enforces security requirements. Moreover, such
evaluation also provides evidence that the system is reliably and continuously
protected against tampering and/or unauthorised changes. Indeed, the orange book
gave us the parameter set by which we can judge the security architecture and
resulting security enforcement in any system. Now, the “Orange Book” sets out six
simple but basic and pervasive requirements for any secure computer system.
These may be summarised as follows:

PPOOLLIICCYY::
1. Security policy must exist and be defined to the system
2. Marking of all entities must be possible

AACCCCOOUUNNTTAABBIILLIITTYY::
3. Identification of all entities
4. Accountability for all actions

AASSSSUURRAANNCCEE::
5. Assurance that security features exist and are reliable
6. Continuous protection is provided.

Can an end user perform such an assessment in a closed environment? The answer
is obviously “no” and he or she must depend upon a trusted third party’s evaluation
or on statements and guarantees provided by the vendor.

End users normally have no reasonable way of making that assessment. Users of
information technology products and systems, particularly where these are
imported from another country, may become totally dependent on security
assurances provided in a completely lopsided contractual arrangement with a
software vendor. The end user may have no power at all to make even the vaguest
statement as to the security status of an operating system or the underlying
hardware incorporated into an enterprise’s information system. With growing
system complexity it is highly likely that such a situation will become much more
obvious over the next few years. The important point to note from the “Orange
Book” experience is that highly secure operating systems and related computer
hardware could be created and sold to meet the “Orange Book” standards in the
1980s at the highest levels. The problem is that such high trust operating systems,
including the “GEMSOS” operating system for common, low cost hardware such
as the Intel 286 based systems, never entered the commodity computer marketplace
and they were largely ignored outside the military and government markets.

 108

CASE STUDIES

Sesame

This paper finishes with two relevant studies which, it may be submitted, further
make the case for the open source environment in relationship to information and
computer/network security. “Sesame” was a European program that acknowledged
the security problems with commodity operating systems. The project concentrated
on operating systems because it was recognised in Europe they really are the
important factor in overall information security. Unless information systems are
created around a secure operating system environment, everything else can be
forgotten. As stated earlier, you cannot create secure applications on top of an
insecure operating system. It is complete nonsense to try to say that you can.

The SESAME project aimed at the enhancement of basic operating system
functions to incorporate so-called “role-based access control” services and related
mechanisms. It also anticipated the use of “Smart Cards” and like tokens for the
incorporation of user “profiles” that could be reliably enforced by the operating
system itself.

Secure Linux

More interesting has been the involvement of the USA’s “National Security
Agency (NSA)” in relationship to the security of operating systems. This
involvement, publicised some two years ago, is a major pointer to the problem of
security in commodity operating systems.

Basically, a paper from the NSA by Losocco157 et al, clearly stated that the
computer industry has not accepted the critical role of operating systems and
security. This statement was as follows:

“The computer industry has not accepted the critical role of the operating system to
security, as evidenced by the inadequacies of the basic protection mechanisms
provided by current mainstream operating systems. The necessity of operating system
security to overall system security is undeniable; the underlying operating system is
responsible for protecting application-space mechanisms against tampering,
bypassing, and spoofing attacks. If it fails to meet this responsibility, system-wide
vulnerabilities will result.

The need for secure operating systems is especially crucial in today’s computing
environment.”

157 “The Inevitability of Failure: The Flawed Assumption of Security in Modern Computing
Environments”.
by Peter A. Loscocco, Stephen D. Smalley,Patrick A. Muckelbauer, Ruth C. Taylor,S. Jeff
Turner, John F. Farrell, National Security Agency, USA. Available at

 109
 http://www.nsa.gov/selinux/doc/inevitability/inevitability.html.

The authority of researchers at the National Security Agency of the USA must be
taken into consideration in relation to any risk statement pertinent to the security of
computer and data network systems. The above statement is unequivocal. The
operating system is responsible for protecting application mechanisms against
tampering and bypass, a major problem in the case of device drivers as indicated
for the Microsoft Windows 2000/XP case mentioned above. Industry has not
accepted this responsibility.

So what did the NSA researchers do? Linux was chosen as a platform for the work
because of its open development environment. What does that basically mean? It
means that we can now demonstrate strong security functionality that has been
made successful in a mainstream, commodity level operating system. Once again
the choice of Linux for this work is clearly explained by the NSA at its web site, as
follows:158

Linux was chosen as the platform for this work because its growing success and open
development environment provided an opportunity to demonstrate that this
functionality can be successful in a mainstream operating system and, at the same
time, contribute to the security of a widely used system. Additionally, the integration
of these security research results into Linux may encourage additional operating
system security research that may lead to additional improvement in system security.

Now this work becomes critical as we start to talk about national information
infrastructure protection (NIIP), particularly as governments worldwide move to e-
government services. In this regard, Standard 17799 places obligations on public
sector managers to make binding statements about the security of their underlining
systems.

So, what is the reason for the SELinux development? The NSA project team made
the following summary statements in relation to their activities:

• The operating system is the right place for security,
• “Mandatory access control” is the correct model for security in the Web/Internet

world,
• Access to “objects” must be controlled by an enterprise policy administrator,
• Users / programmers / processes cannot change security policy, and
• All users / uses are mediated by a trusted service in regard to the policy

The benefits of such an approach may also be summarised as:

• safe execution of untrusted software, such as that obtained from Internet based
sources,

• limited scope for potential damage due to successful penetration of the system,
• separate “environments” for users and developers,

 110

158 Statement available at the following web site: http://www.nsa.gov/selinux.

http://www.nsa.gov/selinux

• an insulated/controlled development environment,
• isolated testing facilities,
• clear separation of policy and enforcement activities, and
• the advantage of an “open source” community able to improve and widely

distribute and influence security architecture.

SUMMARY AND CONCLUSIONS

Computer systems that reliably and securely implement the “mandatory access
control” concept, whereby the policy is set up by management not by the
programmer as with most commodity operating systems, are required for safe and
secure connection to the global Internet. This is a minimum standard, particularly
for “e-government”. In this regard the SELinux activity sets out some minimal
parameters for judging the status of security in relation to current Internet
connected systems. SELinux is a “statement” of the required level of security for
commercial / government usage, from a trusted and acknowledged authority. The
NSA has given a clear statement of the non-performance by industry in the security
area, and provides a demonstration of trust requirements to the IT industry.

In essence, government is demonstrating by example with a system that:

• has widespread availability, with appropriate education / training,
• is highly relevant in the government server market,
• is not limited to one LINUX distribution, and
• complies with the “GNU Licence” arrangement with associated cost advantages.

The GNU licence has the advantages that end-user organizations have the legal
ability to modify and upgrade security as needed to meet risk assessment under IS
17799 for example. This may be favoured over unknown or vague vendor
guarantees in the area. From a market perspective, safety and security never have
been market driven, e.g. seat belts in cars, fire extinguishers in the office or home,
smoke detectors in homes, pool fences around swimming pools for child
protection, etc.

In this regard the GNU licence offers many advantages. An enterprise has the legal
ability to deploy, install and on-sell secure operating systems and related sub-
systems such as compilers, middleware, browsers, Internet protocol “stacks”, etc)
as needed. These may be used within that or associated enterprises or sold or given
to other enterprises or individuals. In this way a person acting as a manager or
director of that enterprise may be able to meet any information security obligation
or equivalent duty as a “director” with reasonable assurance as to information
system security that can be justified and tested “in house”. This could be important
to provide “best evidence” if needed, independent of vendor statements or
promises.

 111

The idea of safe execution of trusted software is becoming critical in relationship to
National Information Infrastructure Protection, and particularly in relation to e-

government. As we move about we have to acknowledge that software can’t be
trusted at present. We do not know the quality of such software or often where it
came from. We are going to bring it “down from the Internet” and put it into our
system for operational usage. Therefore we have to be sure that our system can
enforce the security policy that we set and be tolerant of bad software itself. Now
we can only do that with these levels of systems. We can limit potential dangers
that may happen through successful penetration of the computer system. We can
separate differing working environments. We can get inside and control the
software development situation and isolate testing. We can clearly separate our
policies from their enforcement by the computer system itself.

The underlying principle is actually quite simple. Open source licensing represents
the ideal for the evaluation of the underlining security architecture in the operating
system and the allied mechanisms that activate and support necessary hardware
security features. At the present moment we have a problem in that we are being
diverted by, I would say, by vendor attempts at “muddying the waters” achieved by
trying to align system security to software quality concerns, to “bug fixes” for
example. The two matters, while addressing the overall concern for information
system security, are completely different.

An underlying security architecture, in the sense understood by information
security professionals, means that the system itself is tolerant of software bugs and
provides protection mechanisms against the effects of successful penetration. It
acknowledges that they exist and that they will not “go away”. Problems like
“buffer overflow” will be with us forever. The simplest remedy is, as we have
alluded to already, to ensure that the system security architecture will never allow
the execution of data from the buffer. Hardware that already exists, for example in
Intel processors, can already be used to effect this action.

The protection of the national information infrastructure and critical infrastructures
of our nation will depend upon co-operation between the private and public sector.
Our critical infrastructures are now in control of the private sector. That was not
true 50 years ago but it is true today. Water, power, telecommunications and other
vital community services could even come under the control of foreign interests
and even foreign company directors. Information system security, then, takes on
new significance in this environment.

In one sense, the results of such activities as SELinux are there and quite well
known. Basically a trusted and acknowledged government authority in the USA,
the NSA, has identified a major information security problem and the non-
performance by industry in the security area. The lack of willingness to address
trust requirements in computer operating systems by the IT industry has been now
documented and acknowledged by the National Security Agency.

I believe government will need to upgrade security requirements for operating
systems in procurement actions as a matter of urgency. Indeed, how can a manager

 112

make any sort of statement about the security of the underlying and vital operating
system in any information system and network, under IS17799, without knowing
what the system is? For example, and to continue the car analogy, I don’t know
whether the engine on my car is going to be safe and reliable or not. I depend upon
General Motors to give me that statement and I trust the statement. Managers of the
future you will have a binding statement from the vendor that a system is capable
of being trusted. Open source will give some reasonable basis for that evaluation.
In a closed environment, such a security guarantee from a vendor has to be
absolute. Reasonable prudence would thus suggest movement towards an open
source solution.

I believe the evidence is there. The Sesame case and now the SELinux case
illustrate that at least government has put its name down against one particular
proposal, which is the viability of the open source model for assessment of
security. I submit that in the age of the “next best thing” of so-called “web
services”, this will become even more important as we start to move to software
component libraries to create bespoke application systems. We are going to have to
look at the trust level of those libraries themselves.

In conclusion, I quote Professor Ed Felton of Princeton University, in a paper
coming up in San Francisco in the next month. The quote concerns the right of a
user to “tinker” with their system, as follows:

Freedom to Tinker: … is the freedom to …

• Understand
• Discuss
• Repair, and
• Improve the technological devices you own.159

The simple argument against the concept that closed systems present a major
advantage in relation to information security is symbolised by the machine,
Collosus, which was used at Bletchley Park in the United Kingdom to break the
highest level codes used by the German high command during the Second World
War. The Germans felt that they had a closed system.

In the end we can but learn from history. While the encryption keys and associated
data were hidden from the code breakers at Bletchley Park in the UK during
WWII, they still constructed equipment and systems that enabled them to break the
most secret of Germany’s codes and ciphers. Advocates of a closed system could
learn much from that history. In the end, depending upon secrecy of underlying
technologies may give a false sense of security to the detriment of all.

 113

159 www.freedom-to-tinker.com

Chapter 6

The Developers’ Perspective∗

PAUL GAMPE
Director of Engineering, Red Hat, Asia Pacific

RHYS WEATHERLEY
Independent Developer

PAUL GAMPE

As mentioned earlier, I am the Director of Engineering for Red Hat’s Asia Pacific
operation. We are located in Brisbane, but we have engineers throughout the Asian
region. I will talk a little bit about what we do and some of the legal issues that we
face as an engineering team.

We are a team of software developers with native Asian language ability.
Obviously I’m not one of the native Asian language speakers, although I do speak
Japanese. We focus on Asian language text processing, input, display and printing
of Asian characters. Primarily we target the Chinese, Japanese and Korean markets
at this time. I am also the Red Hat representative for the Linux Internationalisation
Steering Committee. We are a body that works to ensure that there is a common
standard for approaching software internationalisation for the Linux platform. All
of the major Linux vendors are part of that Steering Committee as well as core
technology leaders from areas relevant to software internationalisation.

Our team integrates with a number of units inside of Red Hat’s global engineering
team. Those who are familiar with Asian text will appreciate that hieroglyphics are
used instead of the much simpler character sets that are used for European based
languages. For example when you wish to type one of the 26 thousand Chinese
characters you have to have an input system that allows you to select that particular
character. We maintain the software for each of the Chinese, Japanese and Korean
languages which allows you to interact with the respective fonts and character sets
for these languages.

We also work to integrate support for Asian fonts and printing into core desktop
components such as GNOME and KDE. We perform language specific quality
assurance locally and we also take leadership roles in emerging technologies that

 114

∗ This is a revised version of the transcript from the Legal Issues for Free and Open Source
Software Conference held at QUT in Brisbane Australia on 3 July 2002.

are of greater importance to Asia than other parts of the world. Two such examples
are IPv6 and multi-lingual DNS, two technologies that we lead inside of Red Hat to
ensure that as they develop an adoption throughout the world, Red Hat is in a
position to deliver on these technologies. IPv6 is short for “Internet Protocol
Version 6”. IPv6 is the “next generation” protocol designed by the IETF to replace
the current version Internet Protocol, IP Version 4 (“IPv4”). It is widely deployed
throughout Asia as it provides a much larger address pool than the currently
shrinking range of IPv4. It can also better serve the explosive growth demands for
networked appliances we see in China, Korea and Japan today.

Multi-lingual or internationalised domain names allow non-English speaking
people to use domain names, as we see in email addresses for example, in their
native language and script.

What are some of the legal issues we face? I will speak with respect to what are
some of the advantages that we are seeing and some of the legal framework that is
developing throughout Asia that is assisting the work that we do in drawing on
technologies throughout the region.

I will talk a little bit about the Government support in each of the countries that we
are targeting including regional software compliance, the legal criteria for the sale
of software throughout Asia and some of the Asia-Pacific technologies that I have
mentioned earlier, such as fonts and input methods.

First, open source adoption in Asia. I do not know how many of you have Asian
facing responsibilities, but Asia is the fastest growing market for adoption of open
source:

Linux adoption in the Asia-Pacific Region has grown significantly in the last year,
with 1.5 percent of the region’s companies having services that run on Linux,
according to Gartner Inc. survey of 850 corporations in Asia.

It is not just the Linux operating system. Bill Caelli asked me to mention that the
largest number of downloads of SE Linux have come from China.

What I wanted to bring forward was that Asian economies are not just adopting
open source products and services, they are also beginning to embrace the open
source philosophy. In 2000, India was the first Asian nation to register an affiliate
branch of the Free Software Foundation in Asia.160

China began the process of establishing a branch of the FSF in 2000. They had
completed a feasibility study by 2001 to see whether, under Chinese law, they
would be able to honour the by-laws of the Free Software Foundation, and they are

 115

160 See: [http://gnu.org.in/]

currently about nine months into the process of registration of an affiliate branch of
the Free Software Foundation in China.

So you can see that it’s not just the technology they are adopting but also the
fundamental understanding of what is needed to support open source software
development.

There have been public statements of support from governments in all the major
economies in Asia. Taiwan is backing research and development in open sourced
technologies. Japan has had a multitude of initiatives supporting open source
development. Korea has adopted Linux as a standard operating environment for all
government organisations. The Korea Herald, reports that the Ministry “will
establish a Linux consultative body composed of software experts from the
government, academic and industry sectors to standardize Korean versions of
Linux and develop a variety of programs based on the operating system”. China
has a long history of supporting internal development under its relationship with
Red Flag Software Co. Ltd. Red Flag Software was founded by Software Research
Institute of the Chinese Academy of Sciences and New Margin Venture Capital.

So why has open source been such an advantage – why are we seeing such a strong
growth in open source in this region in particular?

I am not an authority on the area but I do work with developers in all these regions.
These are the main reasons that I see open source is delivering an advantage to the
Asian economies.

First, input methods are tightly coupled with operating systems. It is next to
impossible, or it was extremely difficult, for software vendors to develop
independent input methods for proprietary software operating systems. A few have
emerged for the Windows platform, a few emerged for Sun, but generally if you
are not part of the operating system distribution when talking about input method
technology you are not going to get wide adoption.

Open source has changed that. As a technology company and, as a deliverer of
open source solutions, Red Hat assesses all of the open source applications
available that address our requirement for input methods. We can look at all the
open source development that is occurring in Japan and China and assess which
technology is going to be best to deliver on an input method for that region.

Suddenly developers are able to work and deliver technology relevant to them and
can make it accessible at the operating system level. The barrier to entry has been
eased.

 116

I will talk now about the three economies for which my team develop technologies.

The Beijing Municipal Government last year (2001) requested tenders for a
standard operating system and office automation environment. Of the seven tenders
only one was refused.161

I believe the Chinese government see Linux, and Open Source in general, as a
means to free itself of the burden of illegal pirated software. It is a licensing model
that allows them to widely deploy software to address their business needs and not
infringe on the copyright of others. We are seeing a growing adoption of the GPL
for publishing software. There are a number of software initiatives occurring inside
of China that are choosing the GPL licence to distribute their software. Obviously
the GPL has not been contested in any Chinese Court but they acknowledge it as a
good vehicle for the protection of intellectual property in their country.

Japan I think saw the benefits of open source well before many. SRA, a large
software development company in Japan, were approached by the Japanese
government to identify areas where they could further the adoption of Open Source
software development in Japan. So the Japanese government identified this as an
area for investment at least a year ago.

We have a large body of work coming out of Japan developed under the GPL
licence. They are a strong exporter of open source technologies: the majority of the
IPv6 reference implementation; the KAME stack and now the USAGI stack for
Linux have all come out of Japan as well as the compliance testing suite, TAHI.
And we are seeing government, financial, and legal support for the development of
Open Source software.

I mentioned earlier the Korean Government's adoption of Linux for their standard
operating environment in public service areas. One of the main areas that we are
seeing of benefit for Korean companies is that they are now able to free themselves
from the off-shore royalty burdens. They are able to use Linux as an operating
system for their embedded technologies and no longer have to pay licensing fees to
whoever the particular embedded operating system vendor may have been
previously.162

YOPI was the first PDA to be released as a commercial device with embedded
Linux and that was developed in Korea. Sharp has also just recently released a
Linux based PDA [Zaurus] and they cited patents issues outside of Japan as being a
reason that they chose an open source operating system.

161 Gartner, First Take FT-15-2027.

 117

162 See: [http://www.embedded-linux.org/qa.php3].

In summary, what are some of the legal or legal outcomes of open sourced
deployment in Asia? It is allowing these developing economies to break out of a
dependency on pirated software. It is allowing them to become legally compliant
and to continue to be at the forefront of technology. They are no longer victims of
offshore requirements.

Open source is returning the intellectual property and technology development to
the regional development communities. Surprisingly, a majority of the Chinese
specific technologies that we deploy in Red Hat are based on the work of Chinese
developers in China. It is lowering the barrier of entry to enabling technologies,
e.g., IPV6 and multi-lingual DNS. These sorts of technologies have an open source
reference implementation that is available to all. This is allowing the Asian region
to get to the forefront of developing tools and software and applications for them.

RHYS WEATHERLEY

I am working on Portable.NET163 which is a re-implementation of the program that
Microsoft released a little while ago called .NET. Their material is characterised by
the fact that it only runs on Windows. It does have some interesting technologies. I
said: ‘It would be really nice if we could run this on platforms other than Windows
and make use of these technologies elsewhere’. That is the project I am working on
from a developer’s perspective. The team that is working on this is basically me,
myself, I and Rhys, plus a few part-timers on the Net who send in a couple of lines
of code each month. To date I have written about 300-odd thousand lines of code in
the last year but it is still a tiny fraction of the amount of code necessary to do
something of this magnitude. Because this is a very ambitious project I need help
from the community. Consequently, I need to give some assurances to the
community that my intentions are honourable and that I’m not going to turn out as
some evil proprietary guy somewhere down the line and try to exploit the code that
they contribute to me.

I decided to use the GNU General Public Licence because it creates fairness and
honesty in the relationship between contributors on a project to ensure that if their
contribution is born free it stays free as time goes on. Because of that, I have been
able to attract a few contributors to the project and it is gradually increasing as time
goes on. But if I had used some other kind of licence such as the BSD164 there
would have been two problems.

163 The goal of this project is to build a suite of free software tools to build and execute
.NET applications on Free Software platforms such as GNU/Linux, including a C#
compiler, assembler, disassembler, and runtime engine.
[http://www.southern-storm.com.au/portable_net.html]

 118

164 The BSD licence allows a licensee to engage in “[r]edistribution and use in source and
binary forms, with or without modification” provided the previous copyright owner is
acknowledged, disclaimers are maintained in any distributed work and neither the

First of all, Microsoft or some other proprietary company without actually coming
and talking to me about licensing could have just taken my code and put it in their
own stuff. They could gain without giving anything back to community. That
would be bad for the community. Second, there would be no incentive for the
community to help me because I might go crazy and try to exploit it myself.

There are a number of other legal issues that crop up from time to time. One of
them is the issue of copyright assignment. Copyright assignment can be a very big
problem to deal with. I have a dual policy that people are encouraged to either
assign copyright to me or to the Free Software Foundation. This comes into the
registration issue – we need to have predictable registration eventually.165 Or they
can keep the copyright themselves. But the interesting thing about assignment is –
what does assignment mean?166 If someone emails some code and says “I assign
this to you Rhys” is that legally binding or do they need to sign forms and stuff.
Now from what Larry Rosen said earlier, select forms are necessary. This could be
a big burden on open source projects. Once again, as Andrew mentioned, it
involves tracking down every last person who has written some tiny little function
in your code and getting them to sign a form. This is an extremely longwinded and
expensive process. It is just not well suited to working in open and free software
projects.

We do need a more streamlined way of trying to find how these projects can work
together, have predictable copyright and copyright assignment without having
these legal requirements run us into the ground with paperwork; that in reality is
not really compatible with the development model that we are using. So that is a
legal issue that really needs to be addressed, by legislation or by the court cases,
because it is starting to bury us in legal detail that is not relevant to the production
of the thing that we are producing.

Now the shared source licence.167 I have had a bit of a personal experience with
this and Andrew has as well in his own way. Recently Microsoft released this thing
they call Rotor, that is their own .NET implementation which is kind of the open
source you have when you are not having open source. Microsoft wants to get the
effect of many eyeballs to help and fix bugs and to get contributions from the
community and university lecturers to help them improve their code. But they have
not yet gone the extra step that the free software and open source people talk about
which is that if they want us to help them they need to help us. We need to be on an

organisation or the contributors of previous works are not used to endorse a derivative
work. See: [http://www.opensource.org/licenses/bsd-license.php]
165 While copyright arises automatically upon creation and fixation of a work, registration is
required in the US as a precondition of filing suit for enforcement: ss 408 (a) 411 (a)
Copyright Act 1976.
166 For an assignment of copyright to be effective it must be in writing: s 196 Copyright Act
1968 (Aust), s 204 Copyright Act 1976 (US).

 119

167 http://www.microsoft.com/licensing/sharedsource/default.asp.

http://www.microsoft.com/licensing/sharedsource/default.asp

equal footing. The core underlying principles of both the free software and the
other open source licences are that all contributors are on a relatively equal footing.

My position on patents is very radical. Software patents should be eliminated,
absolutely gone. There is no real justification for them to exist in the software
community and part of the reason why they are so awful is because reinvention of
the wheel is part of what us programmers do every single day. Every single day we
come across problems that we have to solve on the fly. We write some code to
solve that problem and the solutions come from our own brains or they come from
things we learn in university or just experience, or even just analysing the problem
in front of us and saying “OK, we can solve it that way”.

The problem comes when someone runs on down to the patent office and files a
patent on something that the rest of us consider just to be common sense or just an
ordinary every day practice. For example, one of the guys on a related project of
mine called ‘DotGNU’ came up with this really clever idea for downloading user
interfaces. It was a clever idea. Unfortunately, I had to burst his bubble because a
company called Geoworks already had a patent on it,168 even though I think that
there is probably prior art but it is really hard to find the prior art because there is
just very little actually being published in this area. Most of the prior art is in code
that you cannot see because most of it has been closed source in the past. And so I
have had to burst the poor boy’s bubble, but he had never heard of Geoworks, he
had never heard this idea of doing this thing before, he completely came up with it
independently.169 The status quo is reinventing the wheel. It is just the nature of the
game. If you can clearly state a problem you want solved I can solve it and usually
I am going to come up with a solution just based on my own knowledge and not
based of any kind of wonderful invention. So I do not think that software patents
have any role.

Some people argue that there are some good patents, like patents on encryption
algorithms. I argue that those patents are bad. Those patents are bad because they
actually interfere with standardisation. One of the reasons why the Internet is so
insecure today is because at the time that the Internet was really being built out in
the 80s and early 90s we needed secure encryption systems to be built into the
fundamentals of the Internet, yet they were patented. The legacy of that today is an
insecure Internet. That could have been avoided if we did not have patenting of
important algorithms critical to the infrastructure of computer technology. Good
algorithms should be deployed as widely as possible – they should not be
restricted.

168 US patent #5,327,529.

 120

169 Subsequent independent creation is not a defence to patent infringement.

Chapter 7

Recent developments

GRAHAM BASSETT
Barrister, Bank of New South Wales Chambers, Brisbane, Australia

NIC SUZOR

Research Assistant, School of Law, Queensland University of Technology

OPEN SOURCE LEGISLATION

The Australian Democrats have recently proposed federal legislation which
requires consideration of open source software when making decisions about
public agency procurement contracts. A similar legislative proposal has been made
in South Australia.170 The Financial Management and Accountability (Anti
Restrictive Software Practices) Amendment Bill 2003 (Cwth) aims to redress
concerns that “a small number of software manufacturers have a disproportionate
and restrictive hold on the supply, use and development of software”.171 The aim is
to mandate consideration of open source software:

An Agency must, in making a decision about the procurement of computer software for
its operations, have regard to the principle that, wherever practicable, an Agency is to
use open source software in preference to proprietary software.172

A vendor participating in a government software procurement program must ensure
its software “follow industry-wide accepted standards that are open to all vendors
and display an open format”.173 The data that is used in such software “will be kept
at all times in a format that is completely documented in public”.174 Where
agencies have purchased proprietary software it is incumbent on them in their
annual report to list details of such purchases and details as to why any open source
alternative was not procured.175

How does the Bill define open source software? It does not specifically require
that they have a licensing model accepted by the Open Source Initiative. Instead,

170 State Supply (Procurement of Software) Amendment Bill,
http://www.parliament.sa.gov.au/dbsearch/lcbills_search.asp
171 Financial Management and Accountability (Anti Restrictive Software Practices)
Amendment Bill 2003, Preamble.
172 Note 2, s44A(1).
173 Note 2, s44A(2)(a).
174 Note 2, s44A(2)(b).

 121

175 Note 2, s44A(3).

the definition asserts:

open source software means computer software the subject of a licence granting a
person a right:

• without any limitation or restriction, to use the software for any purpose; and
• without any limitation or restriction, to make copies of the software for any

purpose; and
• without any limitation or restriction, to access or modify the source code of the

software for any purpose; and
• without payment of a royalty or other fee, to distribute copies of:
• the software (including as a component of an aggregate distribution containing

computer software from several difference sources); or
• a derived or modified form of software (whether in complied form or in the form

of source code), under the same terms as the licence applying to the software.176

The Initiative for Software Choice (ISC) has opposed the legislation proposed by
the Australian Democrats. In responding to the earlier Bill proposed in the South
Australian Parliament, the group wrote a letter to the Premier, Mike Rann stating:

The ISC strongly supports the development and adoption of all kinds of software –
OSS, hybrid and proprietary. All models have a place in the highly competitive
software market. Only in this manner, through vibrant and open competition, does the
whole of the market thrive, and consumers – both public and private – reap tremendous
benefits. Standing in stark contrast to open competition are state-mandated software
preferences. These “preference” policies strip merit out of the process by using access
to source code as a proxy for ICT project success ….177

The result would be reduced options for software acquisitions, largely eliminating
proprietary offerings that might be the best solutions for the given need.

Additionally, constituents would suffer because the best solutions could never truly be
acquired, with at least one development model – proprietary software – being restricted
from agency consideration. Further, South Australia’s primarily proprietary-based, ICT
industry would be harmed because of foreclosed access to important state market
opportunities.

The ISC group is reported as saying that such government mandates would be a
barrier to free trade agreements.178

176 Note 2, s44A(4).
177 Letter from The Initiative for Software Choice to The Honourable Mike Rann, 10 June
2003 <http://softwarechoice.org/download_files/DearSouthAustraliaRann.pdf> at 22
September.

 122

178 Simon Hayes and James Riley, The Australian IT Today, “Open Source Trade Clash” 1
July 2003.

The proposer of the Democrats Bill, Senator Brian Greig, rebutted these claims,
specifically referring to groups such as ISC. Senator Greig points out that many
current government systems, often unwittingly, mandate use of proprietary systems
because software procurement choices have not considered open source
alternatives. The Australian Tax Office’s much vaunted ‘online lodgement system’,
Greig argues, will not work with open formats or open source software. Greig
argues:

The forces of proprietary software and their supporters have tried to portray this Bill as
being protectionist in nature, one that tries to pick software favourites. It is in fact the
complete opposite. Currently, we have a system that is largely based on proprietary
formats, a system that does pick favourites. Removing this and opening up the playing
field to all, is the raison d’etre for this Bill.179

Senator Greig points out that when the Thai government mandated use of open
source software it was able to provide a hardware and software solution around the
same price as the cost of licenses for Microsoft products alone on the same
machine. The result was that Microsoft dramatically reduced its prices in order to
stay competitive in the government contract area. Greig claims that Microsoft
would recoup lost revenue when they provided upgrades. The key was to obtain,
and then be able to control, the contract. “Microsoft’s actions echo the words of
Henry Ford when he offered to give away his cars provided he could keep the
monopoly on spare parts. It is this type of monopoly that the use of proprietary
formats maintains.”180

SCO v IBM

In March 2003, the SCO Group (previously Caldera Systems, Inc) commenced an
action against IBM in the United States District Court for the District of Utah. SCO
alleges that it is the successor in title of all rights and interests in UNIX, which it
derives from AT&T through a series of corporate acquisitions, and hence controls
the rights of all UNIX vendors (including IBM) to use and distribute UNIX. SCO’s
causes of actions stem from its allegations that IBM wrongfully used code and
expertise developed by SCO (and its predecessors) in developing some aspects of
the Linux kernel.

In its amended complaint,181 SCO seeks US$3 billion in damages, alleging that
IBM breached the terms and conditions contained in several Software Agreements
relating to Unix System V source code, by copying or adapting code into the Linux

179 Senator Brian Greig, The Senate, Second Reading Speech, Hansard, 18 September
2003, 14672.
180 Note 10.
181 The SCO Group, Inc. v International Business Machines Corporation, Amended
Complaint, 16 June 2003,

 123

 <http://www.caldera.com/ibmlawsuit/amendedcomplaintjune16.html>, at 14 September
2003.

kernel, and that IBM engaged in unfair competition in aiding development of
Linux. SCO also alleges that IBM misappropriated SCO’s Trade Secrets,
particularly the knowledge and design developed by SCO for running a UNIX-
based system on Intel processors, to further development of the Linux kernel.

IBM has counterclaimed, alleging that SCO breached the terms in the Software
Agreements by purporting to terminate IBM’s perpetual and irrevocable UNIX
rights and that SCO has publicly misrepresented the legitimacy of IBM’s Linux-
related products and services, in violation of the Lanham (Trademark) Act,182 and
that SCO infringed four of IBM’s software patents. IBM also alleges that by
distributing Linux products, SCO agreed under the GPL not to assert certain
proprietary rights over the Linux source code, and that SCO has breached its
obligations under the GPL.

The allegations have serious ramifications for the Open Source community. Most
immediately, SCO has announced that it plans to charge license fees for
commercial users of GNU/Linux systems.183 If it is accepted that SCO has to
power to charge license fees for existing users, we may see greater uncertainty and
a slowing of the uptake of open source software in the market, by corporations not
wishing to expose themselves to intellectual property obligations that are unable to
be identified at the outset. Against this proposition, Eben Moglen, the Free
Software Foundation’s General Counsel, notes that it is impossible to assess the
weight of undisclosed evidence. He agues that “a number of very severe questions
arise concerning SCO’s legal claims”, and that he sees “substantial reason to reject
SCO’s assertions”.184

More importantly, however, the claims asserted may give rise to a long awaited
court interpretation of the GPL, including discussions on its classification (licence
or contract), revocability, enforceability and third party liability. If litigation
proceeds to completion, we can expect some very interesting precedents to be
developed.

182 15 U.S.C
183 The SCO Group, SCO Registers UNIX® Copyrights and Offers UNIX License, 21 July
2003, <http://ir.sco.com/ReleaseDetail.cfm?ReleaseID=114170>, at 14 September 2003.

 124

184 Eben Moglen, Questioning SCO: A Hard Look at Nebulous Claims, 1 August 2003,
<http://www.fsf.org/philosophy/sco/questioning-sco.html>, at 14 September 2003.

Biographies

THE HONOURABLE PAUL LUCAS
MINISTER FOR INNOVATION AND INFORMATION ECONOMY

Paul Lucas is the Minister for Innovation and Information Economy in the Queensland
State Government. Mr Lucas worked as a solicitor prior to entering Parliament, having
completed a Bachelor of Economics and a Bachelor of Laws at the University of
Queensland and a Master of Business Administration through the University of Southern
Queensland.

The Innovation and Information Economy portfolio which Mr Lucas oversees was created
to position Queensland as Australia’s ‘Smart State’. It seeks to identify Queensland’s key
strengths in innovation and emerging technologies and enable government, industry and the
community to take advantage of opportunities in the new economy. Priorities for the
portfolio include fostering the development of emerging knowledge industries, promoting
the application of technology and e-commerce, encouraging the uptake of ICT skills and
enabling bioindustries to flourish in a safe and ethical environment. Mr Lucas sees the new
portfolio as helping build on Queensland’s existing natural, economic and human resource
advantages.

PROFESSOR BRIAN FITZGERALD BA (Griff), LLB(Hons) (QUT), BCL (Oxon),
LLM (Harv) PhD (Griff)

Brian Fitzgerald is Head of the School of Law at Queensland University of Technology,
Brisbane, Australia and holds postgraduate law degrees from Oxford University and
Harvard University. He is co-editor of one of Australia’s leading texts on E Commerce,
Software and the Internet – Going Digital 2000 - and has published articles on Law and the
Internet, Technology Law and Intellectual Property Law in Australia, the United States,
Europe, India, Nepal and Japan. His latest publication (with his sister Anne Fitzgerald) is
Cyberlaw: Cases and Materials on the Internet, Digital Intellectual Property and
Electronic Commerce (2002). Over the past three years Brian has delivered seminars on
information technology and intellectual property law in Australia, New Zealand, USA,
Canada, Norway, India, Nepal, Japan and the Netherlands. In October 1999 Brian delivered
the Seventh Annual Tenzer Lecture – Software as Discourse: The Power of Intellectual
Property in Digital Architecture – at Cardozo Law School, Yeshiva University in New
York. In October 2000 he was invited as a part of the Distinguished Speaker series hosted
by the Ontario wide Centre for Innovation Law and Policy to deliver an address on Digital
Property at the University of Western Ontario Law School in London, Canada. During the
first half of 2001 he was a Visiting Professor at Santa Clara University Law School in
Silicon Valley in the United States, teaching a seminar on Digital Property
www.scu.edu/law/FacWebPage/Fitzgerald. In March 2001 he convened a forum on
 125

“Innovation, Software, and Reverse Engineering: Technological and Legal Issues” and in
June 2001 he organised a seminar on “Legal and Business Issues Relating to Open Source
Software” both held at Santa Clara University in Silicon Valley. From 1998-2001 Brian
was Head of the School of Law and Justice at Southern Cross University in NSW.

MARK WEBBINK

Mark Webbink joined Red Hat in 2000 having previously worked at the law firm of Moore
& Van Allen, where he practised in the field of intellectual property transactions. Since
joining Red Hat Mark has spoken at numerous conferences around the world on the subject
of Open Source. Mark has addressed the Licensing Executive Society and the Practising
Law Institute. He has also testified before the United States Congress on Open Source and
Patent Law as well as the United States Federal Trade Commission and the United States
Justice Department on Patent Law and Competition. Mark holds a law degree with high
honours from North Carolina Central University. He has a Masters degree in public
administration from the University of North Carolina and a Bachelor of Arts degree from
Purdue University.

PROFESSOR WILLIAM J (BILL) CAELLI — FACS, FTICA, MIEEE (SEN)

Bill Caelli is the Head of the School of Software Engineering and Data Communications.
Immediately prior to this he was Head of the School of Data Communications (1994) which
merged with the then School of Computing Science and Software Engineering on 1 March
2002. Prior to this he was the Founding Director (1988) of the Information Security
Research Centre (ISRC), at the Queensland University of Technology (QUT). He was a
Founder of ERACOM Pty. Ltd., a major information technology security company with
global affiliations and served as its Managing Director and then Technical Director from its
commencement in 1979 until mid-1998. Bill was made a Member of the Australian Science
Technology and Engineering Council (ASTEC) in August 1995 and served on that Council
till its operations were merged with the pertinent Prime Minister’s Council in mid-1998.

PETER JAMES

Peter James specialises in information technology, ecommerce, telecommunications and
trade practices law and is a partner in Communications, Media and Technology Group for
Allens Arthur Robinson, Sydney. His commitment to finding commercially viable
solutions, and providing personal attention, fast turnaround and cutting-edge legal advice,
has built his reputation as one of Australia’s leading technology lawyers. He had advised
governments in relation to telecommunications regulation and infrastructure projects. Peter
also acts for suppliers to the telecommunications industry including Nortel Networks.

 126

PAUL GAMPE

As Director of Engineering for Red Hat Asia-Pacific, Paul Gampe manages multiple
development teams to internationalise products and services for Red Hat. Paul also
manages the engineering team that, over the last few years, has added Japanese, Korean and
most recently Chinese language support to core Red Hat products. Prior to Red Hat, Gampe
served as technical operations manager for Asia Pacific Network Information Centre
(APNIC), one of the three worldwide registries that govern the distribution of Internet
resources (such as IP addresses). As technical operations manager, Gampe over saw the
construction of an Asia-wide registry infrastructure. Gampe joined APNIC in 1997 after
serving as General Manager of TWICS, the first public ISP based in Japan. Gampe is a
member of the Linux Internationalization Steering Committee and Chair of the special
interest group on DNS for APNIC.

RHYS WEATHERLEY

Rhys Weatherley is a member of the DotGNU Steering Committee, and the primary author
of Portable.NET. He graduated from The University of Queensland in 1990 and has since
worked at various Australian and US companies. He recently returned to Australia to
establish his company, Southern Storm Software, Pty Ltd.

BILL LARD

Bill Lard is Senior Director of Licensing Strategy & Architecture at Sun Microsystems, Inc.
He has been an Attorney with Sun for nine years handling software related matters. His
current role is to establish the future direction of Sun's overall technology licensing strategy
and architecture.

YANCY LIND

Yancy is CEO of Lutris Technologies in Santa Cruz, an Internet middleware software
company. He is a businessman, not an attorney, and aims to make open source companies
commercially successful.

DAVID SCHELLHASE

David Schellhase, works in-house as an attorney with Linuxcare, a Linux services
company. He is currently writing a book Inhouse: The Practise of Law Inside an Emerging
Growth Company. He has also worked as an attorney for a number of law firms in Silicon
Valley.

 127

 128

LARRY ROSEN

Lawrence E. (Larry) Rosen is an attorney and founding partner of Rosenlaw.com, a law
firm in California. He is a computer specialist and has extensive experience teaching
computer programming. Larry has been a department and product manager in the computer
and communications industry. As an attorney, his specialty is technology, but he is also a
skilled litigator and negotiator, and a legal advisor to individuals and companies throughout
the Bay Area and the world. He is executive director of Open Source Initiative, a non-profit
organization that reviews and approves open source licenses and that manages the “OSI
Certified” certification mark for open source software.

GRAHAM BASSETT — BA, Dip Ed, InfoTech, LLB(Hons), Barrister-at-law

Graham Bassett is a barrister of the Supreme Court of Queensland and the High Court of
Australia with a special interest in intellectual property and information technology. He has
Chambers in Brisbane and maintains an office in Byron Bay. Before coming to the Bar he
developed IT systems, mainly in private schools in Sydney, Australia. He lectures in
Information Technology Law and Intellectual Property.

NIC SUZOR

Nic Suzor is a final year student in the Information Technology and Law faculties at
Queensland University of Technology. He has been working as a programmer since 1997
and has been active in several open source development projects.

	Legal Issues Relating to Free
	Editors

	Professor Brian Fitzgerald
	Head of the School of Law
	
	
	Queensland University of Technology, Australia

	Graham Bassett
	Contents
	Preface
	Acknowledgements
	Foreword

	Larry Rosen, David Schellhase, Yancy Lind and Bill Lard
	Preface
	Acknowledgements
	Professor Brian Fitzgerald

	Foreword
	
	
	The Honourable Paul Lucas

	Queensland Minister for Innovation and Information Economy

	Chapter 1
	Licensing and Open Source(
	
	
	Mark Webbink
	Senior Vice President and General Counsel, Red Hat, Inc., USA

	What is Copyright?
	What is Open Source software?
	Red Hat Business Model
	The GNU General Public Licence

	Chapter 2
	Legal Issues Relating to Free and
	Open Source Software
	Professor Brian Fitzgerald
	BA (Griff) LLB (QUT) BCL (Oxon.) LLM (Harv) PhD (Griff)
	Head of the School of Law
	Queensland University of Technology, Australia
	Graham Bassett
	Barrister, Bank of New South Wales Chambers, Brisbane, Australia
	1. Introduction
	1.1 Background
	1.2 Proprietary and Communal Software Licensing
	1.3 Free Software Foundation (FSF) and Copy Left
	1.3.1 GNU/Linux
	1.3.2 General Public License (GPL)

	1.4 The Open Source Movement
	1.5 Tension between Open Source and Free Software

	2. Table 1 - Basic Clauses of Some Free and Open Source Licenses
	2.1 The GNU General Public License (GPL)
	
	Clause

	2.2 GNU Lesser Public License
	2.3 BSD� and MIT License
	2.4 The Artistic License
	2.5 Sun Industry Standards Source License (SISSL)
	2.6 Mozilla Public License Version 1.0

	3. Some Legal Issues in Free and Open Source Licensed Software
	3.1 The “Viral” Nature of Free Software
	3.2 Entering the License Contract
	3.3 International Issues
	4. Conclusions

	Chapter 3
	Live from Silicon Valley.
	Views of Free and Open Source Practitioners
	Larry Rosen
	Rosenlaw.com, Silicon Valley USA
	David Schellhase
	Formerly Linuxcare, San Francisco, USA
	Yancy Lind
	Lutris Technologies, Santa Cruz USA
	Bill Lard
	
	
	
	Sun Microsystems, Silicon Valley USA

	Preamble
	Larry Rosen – A Legal View From the Open Source C
	
	Free Software Movement and Open Source
	Open Source License Key Criteria
	Derivative Works
	Standing to Sue

	David Schellhase – An In-house Lawyer’s Concerns
	
	Open and Closed Software Legal Issues
	Proprietary
	
	
	
	
	Open Source
	Table 1. Select Legal Issues in Software

	Open Source Products
	Proprietary Products
	Legal issue

	Employee Problems
	Hackers
	Patents

	Yancy Lind – A Businessperson’s View
	
	Lutris Technologies and Java Application Server
	Case Studies – Plantronics and General Electric
	Commercial Viability of Open Source

	Bill Lard, Senior Director of Licensing Strategy and Architecture at Sun Microsystems
	
	Introduction
	Serial Licenses
	Viral Nature and Inheritance
	Sun Community Source License: A Non-OSI Approved �
	Issues in Public Licenses
	Posting Code
	Posting under GPL
	Employees
	Downloads
	Conclusions

	Chapter 4
	Open Source Software:
	An Australian Perspective
	
	
	Peter CJ James

	Chapter 5
	Security with Free and Open Source Software
	
	
	Professor William J (Bill) Caelli

	Introduction
	It’s not the Net, it’s the Nodes
	Influences on the Need for Security
	
	
	
	System Level Documentation
	Application “Views”
	“Palladium”

	History and Technology
	
	
	
	“E-Government”
	Secure Applications
	
	“Charlie Chaplin”

	Five Alternatives For PC Security
	Alternative 1 – Proprietary / Closed Systems
	Alternative 2 – Full System Documentation Supplie
	Alternative 3 – Source Under Agreement
	Alternative 4 - Open Source
	Alternative 5 - Freeware
	
	
	
	The Open / Closed Debate

	Security in the Computer Hardware
	Segmentation Hardware
	
	
	Assurance

	Case Studies
	Sesame
	
	
	Secure Linux
	Summary and Conclusions

	Chapter 6
	The Developers’ Perspective\(
	
	
	Paul Gampe
	Rhys Weatherley

	Independent Developer
	Paul Gampe

	Rhys Weatherley
	
	Graham Bassett
	
	
	SCO v IBM

	Biographies
	Mark Webbink
	Professor William J \(Bill\) Caelli — FACS, �
	Peter James
	Paul Gampe
	Rhys Weatherley
	Bill Lard
	Yancy Lind
	David Schellhase
	Larry Rosen

