ELECTRONIC CONFIGURATIONS

ELECTRONIC CONFIGURATIONS

CONTENTS

- The Bohr Atom
- Levels and sub-levels
- Rules and principles
- Orbitals
- Rules for filling orbitals.
- The Aufbau principle
- Electronic configurations of elements 1 to 36
- Electronic configurations of ions

ELECTRONIC CONFIGURATIONS

Before you start it would be helpful to...

- Know that electrons can be found outside the nucleus in energy levels (shells)
- Know the electronic configurations of the first 20 elements in 2,8,1 notation

THE BOHR ATOM

Ideas about the structure of the atom have changed over the years. The Bohr theory thought of it as a small nucleus of protons and neutrons surrounded by circulating electrons.

Each shell or energy level could hold a maximum number of electrons.

The energy of levels became greater as they got further from the nucleus and electrons filled energy levels in order.

The theory couldn't explain certain aspects of chemistry.

Maximum electrons per shell
1st shell 2
2nd shell 8
3rd shell 18
4th shell 32
5th shell 50

LEVELS AND SUB-LEVELS

PRINCIPAL

 ENERGY LEVELS\qquad

The energy gap between successive levels got increasingly smaller as the levels got further from the nucleus. The importance of this is discussed later.

LEVELS AND SUB-LEVELS

RULES AND PRINCIPLES

HEISENBERG'S UNCERTAINTY PRINCIPLE
 "You cannot determine the position and momentum of an electron at the same time."
 This means that you cannot say exactly where an electron is.

THE AUFBAU PRINCIPLE
 "Electrons enter the lowest available energy level."

PAULI'S EXCLUSION PRINCIPLE

"No two electrons can have the same four quantum numbers."
Two electrons can go in each orbital, providing they are of opposite spin.

HUND'S RULE OF MAXIMUM MULTIPLICITY
 "When in orbitals of equal energy, electrons will try to remain unpaired."

Placing two electrons in one orbital means that, as they are both negatively charged, there will be some electrostatic repulsion between them. Placing each electron in a separate orbital reduces the repulsion and the system is more stable. It can be described as the "SITTING ON A BUS RULE"!

ORBITALS

An orbital is... a region in space where one is likely to find an electron.
Orbitals can hold up to two electrons as long as they have opposite spin; this is known as PAULI'S EXCLUSION PRINCIPAL.

Orbitals have different shapes...

ORBITALS

An orbital is... a region in space where one is likely to find an electron.

Orbitals can hold up to two electrons as long as they have opposite spin; this is known as PAULI'S EXCLUSION PRINCIPAL.

Orbitals have different shapes...

ORBITAL	SHAPE	OCCURRENCE
\mathbf{s}	spherical	one in every principal level
\mathbf{p}	dumb-bell	three in levels from 2 upwards
\mathbf{d}	various	five in levels from 3 upwards
\mathbf{f}	various	seven in levels from 4 upwards

ORBITALS

An orbital is... a region in space where one is likely to find an electron.

Orbitals can hold up to two electrons as long as they have opposite spin; this is known as PAULI'S EXCLUSION PRINCIPAL.

Orbitals have different shapes...

ORBITAL	SHAPE	OCCURRENCE
\mathbf{s}	spherical	one in every principal level
p	dumb-bell	three in levels from 2 upwards
d	various	five in levels from 3 upwards
f	various	seven in levels from 4 upwards

An orbital is a 3-dimensional statistical shape showing where one is most likely to find an electron. Because, according to Heisenberg, you cannot say exactly where an electron is you are only able to say where it might be found.

SHAPES OF ORBITALS

s orbitals

- spherical
- one occurs in every principal energy level

SHAPES OF ORBITALS

porbitals

- dumb-bell shaped
- three occur in energy levels except the first

SHAPES OF ORBITALS

d orbitals

- various shapes
- five occur in energy levels except the first and second

ORDER OF FILLING ORBITALS

Orbitals are not filled in numerical order because the principal energy levels get closer together as you get further from the nucleus. This results in overlap of sub levels. The first example occurs when the 4 s orbital is filled before the 3d orbitals.

ORDER OF FILLING ORBITALS

Orbitals are not filled in numerical order because the principal energy levels get closer together as you get further from the nucleus. This results in overlap of sub levels. The first example occurs when the 4 s orbital is filled before the 3d orbitals.

ORDER OF FILLING ORBITALS

Orbitals are not filled in numerical order because the principal energy levels get closer together as you get further from the nucleus. This results in overlap of sub levels. The first example occurs when the 4 s orbital is filled before the 3d orbitals.

THE ‘AUFBAU' PRINCIPAL

This states that...
 "ELECTRONS ENTER THE LOWEST AVAILABLE ENERGY LEVEL"

The following sequence will show the 'building up' of the electronic structures of the first 36 elements in the periodic table.

Electrons are shown as half headed arrows and can spin in one of two directions

$$
1 \text { or } \downarrow
$$

s orbitals
p orbitals d orbitals

THE ELECTRONIC CONFIGURATIONS OF THE FIRST 36 ELEMENTS

HYDROGEN
$1 s^{1}$
Hydrogen atoms have one electron. This goes into a vacant orbital in the lowest available energy level.

THE ELECTRONIC CONFIGURATIONS OF THE FIRST 36 ELEMENTS

HELIUM $1 s^{2}$

Every orbital can contain 2 electrons, provided the electrons are spinning in opposite directions. This is based on...

PAULI'S EXCLUSION PRINCIPLE

The two electrons in a helium atom can both go in the 1 s orbital.

'Aufbau'
Principle

THE ELECTRONIC CONFIGURATIONS OF THE FIRST 36 ELEMENTS

LITHIUM
$\mathbf{1 s}^{\mathbf{2}} \mathbf{2 s}^{\mathbf{1}}$
1s orbitals can hold a maximum of two electrons so the third electron in a lithium atom must go into the next available orbital of higher energy. This will be further from the nucleus in the second principal energy level.

The second principal level has two types of orbital (s and p). An s orbital is lower in energy than a p.

[^0]
THE ELECTRONIC CONFIGURATIONS OF THE FIRST 36 ELEMENTS

BERYLLIUM $\mathbf{1 s}^{\mathbf{2}} \mathbf{2 s}^{\mathbf{2}}$

Beryllium atoms have four electrons so the fourth electron pairs up in the 2 s orbital. The 2 s sub level is now full.
'Aufbau'
Principle

THE ELECTRONIC CONFIGURATIONS OF THE FIRST 36 ELEMENTS

THE ELECTRONIC CONFIGURATIONS OF THE FIRST 36 ELEMENTS

CARBON
$1 s^{2} 2 s^{2} \mathbf{p}^{2}$
The next electron in doesn't pair up with the one already there. This would give rise to repulsion between the similarly charged species. Instead, it goes into another p orbital which means less repulsion, lower energy and more stability.

THE ELECTRONIC CONFIGURATIONS OF THE FIRST 36 ELEMENTS

NITROGEN

$1 s^{2} 2 s^{2} 2 p^{3}$
Following Hund's Rule, the next electron will not pair up so goes into a vacant p orbital. All three electrons are now unpaired. This gives less repulsion, lower energy and therefore more stability.

THE ELECTRONIC CONFIGURATIONS OF THE FIRST 36 ELEMENTS

OXYGEN
$1 s^{2} 2 s^{2} 2 p^{4}$
With all three orbitals halffilled, the eighth electron in an oxygen atom must now pair up with one of the electrons already there.

THE ELECTRONIC CONFIGURATIONS OF THE FIRST 36 ELEMENTS

FLUORINE $1 s^{2} 2 s^{2} 2 p^{5}$

The electrons continue to pair up with those in the half-filled orbitals.

THE ELECTRONIC CONFIGURATIONS OF THE FIRST 36 ELEMENTS

> NEON
> $1 s^{2} 2 s^{2} 2 p^{6}$

The electrons continue to pair up with those in the half-filled orbitals. The 2p orbitals are now completely filled and so is the second principal energy level.

In the older system of describing electronic configurations, this would have been written as 2,8 .

THE ELECTRONIC CONFIGURATIONS OF THE FIRST 36 ELEMENTS

SODIUM - ARGON

With the second principal energy level full, the next electrons must go into the next highest level. The third principal energy level contains three types of orbital; s, p and d.

The 3s and 3p orbitals are filled in exactly the same way as those in the 2 s and $2 p$ sub levels.

'Aufbau’
Principle

THE ELECTRONIC CONFIGURATIONS OF THE FIRST 36 ELEMENTS

SODIUM - ARGON

$\mathrm{Na} \quad 1 \mathrm{~s}^{\mathbf{2}} \mathbf{2} \mathrm{s}^{\mathbf{2}} \mathbf{2 p}{ }^{6} \mathbf{3} \mathrm{~s}^{1}$
$M g \quad 1 s^{2} \mathbf{2} s^{2} \mathbf{2 p}^{6} \mathbf{3} s^{2}$
Al $\quad 1 s^{2} \mathbf{2} s^{2} \mathbf{2} p^{6} \mathbf{3} s^{2} \mathbf{3} p^{1}$
Si $\quad 1 s^{2} \mathbf{2} s^{2} \mathbf{2} p^{6} \mathbf{3} s^{2} \mathbf{3} p^{2}$
$P \quad 1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{3}$
S $\quad 1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{4}$
CI $\quad 1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{5}$
Ar $\quad 1 s^{2} \mathbf{2 s}^{2} \mathbf{2} p^{6} \mathbf{3} s^{\mathbf{2}} \mathbf{3} p^{6}$

Remember that the 3p configurations follow Hund's
Rule with the electrons remaining unpaired to give more stability.

THE ELECTRONIC CONFIGURATIONS OF THE FIRST 36 ELEMENTS

POTASSIUM

$$
1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s^{1}
$$

In numerical terms one would expect the 3d orbitals to be filled next.

However, because the principal energy levels get closer together as you go further from the nucleus coupled with the splitting into sub energy levels, the 4 s orbital is of a LOWER ENERGY than the 3d orbitals so gets filled first.

THE ELECTRONIC CONFIGURATIONS OF THE FIRST 36 ELEMENTS

CALCIUM
$1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s^{2}$
As expected, the next electron pairs up to complete a filled 4 s orbital.

This explanation, using sub levels fits in with the position of potassium and calcium in the Periodic Table. All elements with an -s ${ }^{1}$ electronic configuration are in Group I and all with an - s^{2} configuration are in Group II.

> 'Aufbau'
> Principle

THE ELECTRONIC CONFIGURATIONS OF THE FIRST 36 ELEMENTS

SCANDIUM
$1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s^{2} 3 d^{1}$
With the lower energy 4s orbital filled, the next electrons can now fill the 3d orbitals. There are five d orbitals. They are filled according to Hund's Rule BUT WATCH OUT FOR TWO SPECIAL CASES.

HUND'S RULE

OF
MAXIMUM MULTIPLICITY

THE ELECTRONIC CONFIGURATIONS OF THE FIRST 36 ELEMENTS

TITANIUM

$1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s^{2} 3 d^{2}$
The 3d orbitals are filled according to Hund's rule so the next electron doesn't pair up but goes into an empty orbital in the same sub level.

HUND'S RULE
 OF

MAXIMUM MULTIPLICITY

THE ELECTRONIC CONFIGURATIONS OF THE FIRST 36 ELEMENTS

VANADIUM
$1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s^{2} 3 d^{3}$
The 3d orbitals are filled according to Hund's rule so the next electron doesn't pair up but goes into an empty orbital in the same sub level.

HUND'S RULE

OF
MAXIMUM MULTIPLICITY

THE ELECTRONIC CONFIGURATIONS OF THE FIRST 36 ELEMENTS

CHROMIUM
$1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s^{1} 3 d^{5}$
One would expect the configuration of chromium atoms to end in $4 \mathrm{~s}^{\mathbf{2}} \mathbf{3} \mathrm{d}^{4}$.

To achieve a more stable arrangement of lower energy, one of the 4s electrons is promoted into the 3d to give six unpaired electrons with lower repulsion.

HUND'S RULE

 OFMAXIMUM MULTIPLICITY

THE ELECTRONIC CONFIGURATIONS OF THE FIRST 36 ELEMENTS

MANGANESE
$1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s^{2} 3 d^{5}$
The new electron goes into the 4 s to restore its filled state.

HUND'S RULE

 OFMAXIMUM MULTIPLICITY

THE ELECTRONIC CONFIGURATIONS OF THE FIRST 36 ELEMENTS

THE ELECTRONIC CONFIGURATIONS OF THE FIRST 36 ELEMENTS

THE ELECTRONIC CONFIGURATIONS OF THE FIRST 36 ELEMENTS

NICKEL
$1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s^{2} 3 d^{8}$
Orbitals are filled according to Hund's Rule. They continue to pair up.

HUND'S RULE

 OFMAXIMUM MULTIPLICITY

THE ELECTRONIC CONFIGURATIONS OF THE FIRST 36 ELEMENTS

COPPER
$1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s^{1} 3 d^{10}$
One would expect the configuration of chromium atoms to end in $4 \mathrm{~s}^{2} \mathbf{3} \mathrm{~d}^{9}$.

To achieve a more stable arrangement of lower energy, one of the 4s electrons is promoted into the 3 d .

THE ELECTRONIC CONFIGURATIONS OF THE FIRST 36 ELEMENTS

THE ELECTRONIC CONFIGURATIONS OF THE FIRST 36 ELEMENTS

GALLIUM - KRYPTON

The $4 p$ orbitals are filled in exactly the same way as those in the $2 p$ and $3 p$ sub levels.

HUND'S RULE

 OFMAXIMUM MULTIPLICITY

THE ELECTRONIC CONFIGURATIONS OF THE FIRST 36 ELEMENTS

GALLIUM - KRYPTON

$$
\begin{aligned}
& \text { Prefix with... } \\
& 1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s^{2} 3 d^{10} \\
& \qquad \begin{aligned}
\text { Ga } & -4 p^{1} \\
\text { Ge } & -4 p^{2} \\
\text { As } & -4 p^{3} \\
\text { Se } & -4 p^{4} \\
B r & -4 p^{5} \\
K r & -4 p^{6}
\end{aligned}
\end{aligned}
$$

Remember that the $4 p$ configurations follow Hund's Rule with the electrons remaining unpaired to give more stability.

ELECTRONIC CONFIGURATIONS

THEE END

[^0]: 'Aufbau' Principle

