7.

Problem 11.58P (HRW)

(a) Show that the rotational inertia of a solid cylinder of mass M radius R about its central axis is equal to the rotational inertia of a thin loop of mass M and radius $R / \sqrt{2}$ about its central axis. (b) Show that the rotational inertia I of any given body of mass M about any given axis is equal to the rotational inertia of an equivalent loop about that axis, if the loop has the same mass M and radius k given by

$$
k=\sqrt{\frac{I}{M}} .
$$

The radius k of the equivalent loop is called the radius of gyration of the given body.

Solution:

(a)

In problem 1 we have calculated expressions for rotational inertia of different geometrical bodies
including that of a cylinder of mass M and radius R about its central axis. We use the result that the rotational inertia I of a cylinder about its central axis is $I=\frac{1}{2} M R^{2}$.

The rotational inertia of a thin loop of mass M and radius k about its central axis $M k^{2}$ is basically the definition of rotational inertia. We thus have the relation $M k^{2}=\frac{1}{2} M R^{2}$,
or
$k=\frac{R}{\sqrt{2}}$.
(b)

By definition the radius of gyration k for a body with moment of inertia I about a given axis is the radius of a loop of the same mass M and having the same moment of inertia as that of the body about the same axis passing through its centre. Therefore,

$$
M k^{2}=I
$$

or
$k=\sqrt{I / M}$.

