5.

Problem 11.50E (HRW)

Two particles, each with mass m, are fastened to each other, and to a rotation axis at O, by two thin rods, each with length l and mass M as shown in the figure. The combination rotates around the rotation axis with angular velocity ω. Obtain algebraic expressions for (a) the rotational inertia of the combination about O and (b) the kinetic energy of rotation about O.

Solution:

(a)

As mass of each rod is m and their combined length is $2 l$, the moment of inertia of the rods with respect to rotation axis at O is $\frac{1}{3} \times 2 M \times(2 l)^{2}=\frac{8}{3} M l^{2}$.

The moment of inertia of the two balls about O is $m l^{2}+m(2 l)^{2}=5 m l^{2}$.

Therefore, the algebraic expression for the rotational inertia of the combination about O is $I=\frac{8}{3} M l^{2}+5 m l^{2}$.
(b)

And, the kinetic energy of rotation about O is

$$
K E_{\text {rot }}=\frac{1}{2} \times I \omega^{2}=\frac{1}{2}\left(\frac{8}{3} M+5 m\right) l^{2} \omega^{2} .
$$

